Adapting genomics to study the evolution and ecology of agricultural systems

被引:12
|
作者
Friesen, Maren L. [2 ]
von Wettberg, Eric J. [1 ]
机构
[1] Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA
[2] Univ So Calif, Dept Mol & Computat Biol, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
TIME GENE FRIGIDA; LOCAL ADAPTATION; ARABIDOPSIS-THALIANA; QUANTITATIVE TRAIT; FLOWERING TIME; POPULATION-STRUCTURE; WIDE ASSOCIATION; MIMULUS-GUTTATUS; SHADE-AVOIDANCE; HEAVY-METAL;
D O I
10.1016/j.pbi.2009.11.003
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the face of global change, agriculture increasingly requires germplasm with high yields on marginal lands. Identifying pathways that are adaptive under marginal conditions is increasingly possible with advances at the intersection of evolutionary ecology, population genetics, and functional genomics. Trait-based (reverse ecology) approaches have connected flowering time in Arabidopsis thaliana to single alleles with environment-specific effects. Similarly, genetic dissection of rice flooding tolerance enabled the production of near-isogenic lines exhibiting tolerance and high yields. An alternative gene-forward (forward ecology) approach identified candidate genes for local adaptation of Arabidopsis lyrata to heavy-metal rich soils. A global perspective on plant adaptation and trait correlations provides a foundation for breeding tolerant crops and suggests populations adapted to marginal habitats be conservation priorities.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 50 条
  • [31] Insights from the study of complex systems for the ecology and evolution of animal populations
    Fisher, David N.
    Pruitt, Jonathan N.
    CURRENT ZOOLOGY, 2020, 66 (01) : 1 - 14
  • [32] EVOLUTION - THE MISSING INGREDIENT IN SYSTEMS ECOLOGY
    LOEHLE, C
    PECHMANN, JHK
    AMERICAN NATURALIST, 1988, 132 (06): : 884 - 899
  • [33] Reproduction, ecology, and evolution in marine systems
    Basch, Larry V.
    BULLETIN OF MARINE SCIENCE, 2007, 81 (02) : 155 - 156
  • [34] Comparative genomics and evolution of bacterial regulatory systems
    Gelfand, MS
    Gerasimova, AV
    Kotelnikova, EA
    Laikova, ON
    Makeev, VY
    Mironov, AA
    Panina, EM
    Ravcheev, DA
    Rodionov, DA
    Vitreschak, AG
    BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE II, 2006, : 111 - 119
  • [35] Agricultural typologies to describe the evolution of agricultural systems in Andalusia
    García, CR
    ECOSYSTEMS AND SUSTAINABLE DEVELOPMENT IV, VOLS 1 AND 2, 2003, 18-19 : 1037 - 1046
  • [36] Coccidioides ecology and genomics
    Barker, Bridget M.
    Litvintseva, Anastasia P.
    Riquelme, Meritxell
    Vargas-Gastelum, Lluvia
    MEDICAL MYCOLOGY, 2019, 57 : S21 - S29
  • [37] Ecology of Bacillus and Paenibacillus spp. in agricultural systems
    Gardener, BBM
    PHYTOPATHOLOGY, 2004, 94 (11) : 1252 - 1258
  • [38] Evolutionary ecology of mycorrhizal functional diversity in agricultural systems
    Verbruggen, Erik
    Kiers, E. Toby
    EVOLUTIONARY APPLICATIONS, 2010, 3 (5-6): : 547 - 560
  • [39] Adapting a Photochemical Reactor to the Study of UV Ecology in Vineyard Yeast
    Longan, Emery
    Knutsen, Melissa
    Shinkle, James
    Chosed, Renee J.
    AMERICAN JOURNAL OF ENOLOGY AND VITICULTURE, 2017, 68 (04): : 499 - 503
  • [40] Ancient population genomics and the study of evolution
    Parks, M.
    Subramanian, S.
    Baroni, C.
    Salvatore, M. C.
    Zhang, G.
    Millar, C. D.
    Lambert, D. M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 370 (1660)