Adapting genomics to study the evolution and ecology of agricultural systems

被引:12
|
作者
Friesen, Maren L. [2 ]
von Wettberg, Eric J. [1 ]
机构
[1] Florida Int Univ, Dept Biol Sci, Miami, FL 33199 USA
[2] Univ So Calif, Dept Mol & Computat Biol, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
TIME GENE FRIGIDA; LOCAL ADAPTATION; ARABIDOPSIS-THALIANA; QUANTITATIVE TRAIT; FLOWERING TIME; POPULATION-STRUCTURE; WIDE ASSOCIATION; MIMULUS-GUTTATUS; SHADE-AVOIDANCE; HEAVY-METAL;
D O I
10.1016/j.pbi.2009.11.003
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the face of global change, agriculture increasingly requires germplasm with high yields on marginal lands. Identifying pathways that are adaptive under marginal conditions is increasingly possible with advances at the intersection of evolutionary ecology, population genetics, and functional genomics. Trait-based (reverse ecology) approaches have connected flowering time in Arabidopsis thaliana to single alleles with environment-specific effects. Similarly, genetic dissection of rice flooding tolerance enabled the production of near-isogenic lines exhibiting tolerance and high yields. An alternative gene-forward (forward ecology) approach identified candidate genes for local adaptation of Arabidopsis lyrata to heavy-metal rich soils. A global perspective on plant adaptation and trait correlations provides a foundation for breeding tolerant crops and suggests populations adapted to marginal habitats be conservation priorities.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 50 条
  • [21] Going wild: ecology and genomics are crucial to understand yeast evolution
    Cavalieri, Duccio
    Valentini, Beatrice
    Stefanini, Irene
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2022, 75
  • [22] Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics
    Orsi, Renato H.
    den Bakker, Henk C.
    Wiedmann, Martin
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2011, 301 (02) : 79 - 96
  • [23] Evolution and ecology of MHC molecules: from genomics to sexual selection
    Edwards, SV
    Hedrick, PW
    TRENDS IN ECOLOGY & EVOLUTION, 1998, 13 (08) : 305 - 311
  • [24] Evolution of parasitism along convergent lines: from ecology to genomics
    Poulin, Robert
    Randhawa, Haseeb S.
    PARASITOLOGY, 2015, 142 : S6 - S15
  • [25] Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence
    McLeish, Michael J.
    Fraile, Aurora
    Garcia-Arenal, Fernando
    PHYTOPATHOLOGY, 2021, 111 (01) : 32 - 39
  • [26] Phylosystemics: Merging Phylogenomics, Systems Biology, and Ecology to Study Evolution
    Watson, A. K.
    Habib, M.
    Bapteste, E.
    TRENDS IN MICROBIOLOGY, 2020, 28 (03) : 176 - 190
  • [27] Genomics, evolution and evolution of genomics
    Kyrpides, N.
    FEBS JOURNAL, 2008, 275 : 9 - 9
  • [28] Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest
    Ometto, Lino
    Cestaro, Alessandro
    Ramasamy, Sukanya
    Grassi, Alberto
    Revadi, Santosh
    Siozios, Stefanos
    Moretto, Marco
    Fontana, Paolo
    Varotto, Claudio
    Pisani, Davide
    Dekker, Teun
    Wrobel, Nicola
    Viola, Roberto
    Pertot, Ilaria
    Cavalieri, Duccio
    Blaxter, Mark
    Anfora, Gianfranco
    Rota-Stabelli, Omar
    GENOME BIOLOGY AND EVOLUTION, 2013, 5 (04): : 745 - 757
  • [29] Genetics and genomics in wildlife studies: Implications for ecology, evolution, and conservation biology
    Cruz, Fernando
    Brennan, Adrian C.
    Gonzalez-Voyer, Alejandro
    Munoz-Fuentes, Violeta
    Eaaswarkhanth, Muthukrishnan
    Roques, Severine
    Xavier Pico, F.
    BIOESSAYS, 2012, 34 (03) : 245 - 246
  • [30] Combining morphology, behaviour and genomics to understand the evolution and ecology of microbial eukaryotes
    Keeling, Patrick J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1786)