Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau

被引:36
|
作者
Mu, Cuicui [1 ]
Zhang, Tingjun [1 ]
Zhang, Xiankai [1 ]
Cao, Bin [1 ]
Peng, Xiaoqing [1 ]
Cao, Lin [1 ]
Su, Hang [1 ]
机构
[1] Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Permafrost; Soil organic carbon; Soil inorganic carbon; Pedogenesis; Cryogenic structure; Water-soluble organic carbon; ORGANIC-MATTER; INORGANIC CARBON; CLIMATE-CHANGE; DECOMPOSITION; VARIABILITY; MOUNTAINS; DYNAMICS; MOISTURE; RELEASE; FOREST;
D O I
10.1016/j.catena.2016.02.020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The variability of soil carbon and nitrogen and the lack of information regarding the properties of deep soils in alpine permafrost regions hinder our understanding of ecosystem responses to climate change. The objective of this study was to examine the effects of pedogenesis and soil physicochemical parameters on the distributions of soil carbon and nitrogen and their characteristics of alpine meadows in permafrost regions. The results showed that pedogenesis was an important factor in the distribution of soil organic carbon (SOC) and total nitrogen (TN) in both the active layers and deep soils. The average water-soluble organic carbon (WSOC) content in the permafrost layer was higher than that of the active layer, which implied that the carbon pool in the permafrost layer was easily decomposable. Soil pH was an important factor that influenced soil inorganic carbon (SIC), which was closely associated with SOC in deep soils. The significant negative relationships between the SIC, pH and C/N ratios in permafrost regions implied that SIC can play an important role in the turnover of SOM and TN. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [41] Alpine shrub had a stronger soil water retention capacity than the alpine meadow on the northeastern Qinghai-Tibetan Plateau
    Dai, Licong
    Fu, Ruiyu
    Guo, Xiaowei
    Du, Yangong
    Hu, Zhongmin
    Cao, Guangmin
    Dai, Licong (licongdai1993@163.com), 1600, Elsevier B.V. (133):
  • [42] Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau
    Guojie Hu
    Lin Zhao
    Xiaodong Wu
    Ren Li
    Tonghua Wu
    Youqi Su
    Junming Hao
    Theoretical and Applied Climatology, 2019, 138 : 1457 - 1470
  • [43] Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau
    Hu, Guojie
    Zhao, Lin
    Wu, Xiaodong
    Li, Ren
    Wu, Tonghua
    Su, Youqi
    Hao, Junming
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 138 (3-4) : 1457 - 1470
  • [44] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Guoyong Li
    Junpeng Mu
    Yinzhan Liu
    Nicholas G. Smith
    Shucun Sun
    Plant and Soil, 2017, 421 : 147 - 155
  • [45] Effect of microtopography on soil respiration in an alpine meadow of the Qinghai-Tibetan plateau
    Li, Guoyong
    Mu, Junpeng
    Liu, Yinzhan
    Smith, Nicholas G.
    Sun, Shucun
    PLANT AND SOIL, 2017, 421 (1-2) : 147 - 155
  • [46] Effects of small-scale patchiness of alpine grassland on ecosystem carbon and nitrogen accumulation and estimation in northeastern Qinghai-Tibetan Plateau
    Qin, Yu
    Yi, Shuhua
    Ding, Yongjian
    Xu, Gaowei
    Chen, Jianjun
    Wang, Zhiwei
    GEODERMA, 2018, 318 : 52 - 63
  • [48] Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region
    Yang, Zhaoping
    Hua Ouyang
    Zhang, Xianzhou
    Xu, Xingliang
    Zhou, Caiping
    Yang, Wenbin
    ENVIRONMENTAL EARTH SCIENCES, 2011, 63 (03) : 477 - 488
  • [49] Spatial variability of soil moisture at typical alpine meadow and steppe sites in the Qinghai-Tibetan Plateau permafrost region
    Zhaoping Yang
    Hua Ouyang
    Xianzhou Zhang
    Xingliang Xu
    Caiping Zhou
    Wenbin Yang
    Environmental Earth Sciences, 2011, 63 : 477 - 488
  • [50] Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai-Tibetan Plateau
    Li Wen
    Wang Jinlan
    Zhang Xiaojiao
    Shi Shangli
    Cao Wenxia
    ECOLOGICAL ENGINEERING, 2018, 111 : 134 - 142