Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau

被引:36
|
作者
Mu, Cuicui [1 ]
Zhang, Tingjun [1 ]
Zhang, Xiankai [1 ]
Cao, Bin [1 ]
Peng, Xiaoqing [1 ]
Cao, Lin [1 ]
Su, Hang [1 ]
机构
[1] Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Western Chinas Environm Syst, Minist Educ, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
Permafrost; Soil organic carbon; Soil inorganic carbon; Pedogenesis; Cryogenic structure; Water-soluble organic carbon; ORGANIC-MATTER; INORGANIC CARBON; CLIMATE-CHANGE; DECOMPOSITION; VARIABILITY; MOUNTAINS; DYNAMICS; MOISTURE; RELEASE; FOREST;
D O I
10.1016/j.catena.2016.02.020
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The variability of soil carbon and nitrogen and the lack of information regarding the properties of deep soils in alpine permafrost regions hinder our understanding of ecosystem responses to climate change. The objective of this study was to examine the effects of pedogenesis and soil physicochemical parameters on the distributions of soil carbon and nitrogen and their characteristics of alpine meadows in permafrost regions. The results showed that pedogenesis was an important factor in the distribution of soil organic carbon (SOC) and total nitrogen (TN) in both the active layers and deep soils. The average water-soluble organic carbon (WSOC) content in the permafrost layer was higher than that of the active layer, which implied that the carbon pool in the permafrost layer was easily decomposable. Soil pH was an important factor that influenced soil inorganic carbon (SIC), which was closely associated with SOC in deep soils. The significant negative relationships between the SIC, pH and C/N ratios in permafrost regions implied that SIC can play an important role in the turnover of SOM and TN. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [31] Slope aspect effects on plant community characteristics and soil properties of alpine meadows on Eastern Qinghai-Tibetan plateau
    Zhang, Qi-peng
    Fang, Ru-yao
    Deng, Cui-yan
    Zhao, Hong-juan
    Shen, Meng -Han
    Wang, Qian
    ECOLOGICAL INDICATORS, 2022, 143
  • [32] Response of Soil Water Storage to Meteorological Factors in Alpine Shrub Meadow on Northeastern Qinghai-Tibetan Plateau
    Li, Jing
    Zhang, Fawei
    Si, Mengke
    Lan, Yuting
    Li, Bencuo
    Lin, Li
    Du, Yangong
    Cao, Guangmin
    Guo, Xiaowei
    DIVERSITY-BASEL, 2022, 14 (03):
  • [33] Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan Plateau
    Baumann, Frank
    He, Jin-Sheng
    Schmidt, Karsten
    Kuehn, Peter
    Scholten, Thomas
    GLOBAL CHANGE BIOLOGY, 2009, 15 (12) : 3001 - 3017
  • [34] Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau
    Zhang, Wenjuan
    Xue, Xian
    Peng, Fei
    You, Quangang
    Hao, Aihua
    GLOBAL ECOLOGY AND CONSERVATION, 2019, 20
  • [35] Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan Plateau
    Fei Ren
    Xiaoxia Yang
    Huakun Zhou
    Wenyan Zhu
    Zhenhua Zhang
    Litong Chen
    Guangmin Cao
    Jin-Sheng He
    Scientific Reports, 6
  • [36] Impacts of livestock grazing on vegetation characteristics and soil chemical properties of alpine meadows in the eastern Qinghai-Tibetan Plateau
    Ji, Lei
    Qin, Yan
    Jimoh, Saheed Olaide
    Hou, Xiangyang
    Zhang, Na
    Gan, Youmin
    Luo, Yuanjia
    ECOSCIENCE, 2020, 27 (02): : 107 - 118
  • [37] Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau
    Han Yuhui
    Dong Shikui
    Zhao Zhenzhen
    Sha Wei
    Li Shuai
    Shen Hao
    Xiao Jiannan
    Zhang Jing
    Wu Xiaoyu
    Jiang Xiaoman
    Zhao Jinbo
    Liu Shiliang
    Dong Quanmin
    Zhou Huakun
    Jane C. Yeomans
    GEODERMA, 2019, 343 : 263 - 268
  • [38] Alpine shrub had a stronger soil water retention capacity than the alpine meadow on the northeastern Qinghai-Tibetan Plateau
    Dai, Licong
    Fu, Ruiyu
    Guo, Xiaowei
    Du, Yangong
    Hu, Zhongmin
    Cao, Guangmin
    ECOLOGICAL INDICATORS, 2021, 133
  • [39] Effect of grazing management strategies on the vegetation parameters and soil nutrients in alpine Kobresia pygmaea meadow on the northeastern Qinghai-Tibetan Plateau
    Lan, Yuting
    Fan, Bo
    Guo, Xiaowei
    Si, Mengke
    Li, Bencuo
    Qian, Dawen
    Lin, Li
    GLOBAL ECOLOGY AND CONSERVATION, 2023, 48
  • [40] Contrasting effects of nitrogen and phosphorus addition on soil respiration in an alpine grassland on the Qinghai-Tibetan Plateau
    Ren, Fei
    Yang, Xiaoxia
    Zhou, Huakun
    Zhu, Wenyan
    Zhang, Zhenhua
    Chen, Litong
    Cao, Guangmin
    He, Jin-Sheng
    SCIENTIFIC REPORTS, 2016, 6