Ultra-high fuel utilization in polymer electrolyte fuel cells part I: An experimental study

被引:2
|
作者
Yang, X. G. [1 ,2 ]
Wang, Y. [1 ,2 ]
Wang, C. Y. [1 ,2 ]
机构
[1] Penn State Univ, Electrochem Engine Ctr, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Fuel utilization; low stoichiometry; operation stability; water management; hydrogen; fuel cells; CURRENT DISTRIBUTIONS; RECIRCULATION SYSTEM; WATER MANAGEMENT; TRANSPORT; ANODE;
D O I
10.1080/15435075.2021.1941041
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a high fuel utilization approach for polymer electrolyte fuel cells (PEFC) is proposed and studied experimentally. This approach uses an ultra-low hydrogen stoichiometry supply (i.e., xi(a) = 1.02) meanwhile sustaining stable cell performance. Systematic experiments showed the feasibility of high fuel utilization approach under different pressures and hydrogen/air inlet humidification conditions. It is indicated that the fuel cell is able to provide stable performance at a real fuel stoichiometry xi(a) = 1.02 under high-current density operation. For all the tests at xi(a)/xi(c) = 1.5/2.0 or 1.02/2.0, there exist unstable operation regimes typically in low power conditions. The instability as a result of flooding is affected mainly by air stoichiometry and less by fuel stoichiometry.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
  • [31] Experimental Determination of Water Transport in Polymer Electrolyte Membrane Fuel Cells
    Yau, Tak Cheung
    Sauriol, Pierre
    Bi, Xiaotao T.
    Stumper, Juergen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (09) : B1310 - B1320
  • [32] Modelling and experimental validation of a high temperature polymer electrolyte fuel cell
    K. Scott
    S. Pilditch
    M. Mamlouk
    Journal of Applied Electrochemistry, 2007, 37 : 1245 - 1259
  • [33] Experimental Analysis on the Influence of Operating Profiles on High Temperature Polymer Electrolyte Membrane Fuel Cells
    Chinese, Tancredi
    Ustolin, Federico
    Marmiroli, Benedetta
    Amenitsch, Heinz
    Taccani, Rodolfo
    ENERGIES, 2021, 14 (20)
  • [34] Modelling and experimental validation of a high temperature polymer electrolyte fuel cell
    Scott, K.
    Pilditch, S.
    Mamlouk, M.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2007, 37 (11) : 1245 - 1259
  • [35] Study of Alkaline Electrodes for Hybrid Polymer Electrolyte Fuel Cells
    Unlu, Murat
    Zhou, Junfeng
    Kohl, Paul A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) : B1391 - B1396
  • [36] Experimental analysis of a 2 kWe LPG-based fuel processor for polymer electrolyte fuel cells
    Cipitì, F
    Recupero, V
    Pino, L
    Vita, A
    Laganà, M
    JOURNAL OF POWER SOURCES, 2006, 157 (02) : 914 - 920
  • [37] Performance of a 5 kWe fuel processor for polymer electrolyte fuel cells
    Cipiti, F.
    Pino, L.
    Vita, A.
    Lagana, M.
    Recupero, V.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (12) : 3197 - 3203
  • [38] Direct type polymer electrolyte fuel cells using methoxy fuel
    Tsutsumi, Y
    Nakano, Y
    Kajitani, S
    Yamasita, S
    ELECTROCHEMISTRY, 2002, 70 (12) : 984 - 987
  • [39] Experimental study of the effect of dissolution on the gas diffusion layer in polymer electrolyte membrane fuel cells
    Ha, Taehun
    Cho, Junhyun
    Park, Jaeman
    Min, Kyoungdoug
    Kim, Han-Sang
    Lee, Eunsook
    Jyoung, Jy-Young
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (19) : 12427 - 12435
  • [40] Experimental study on carbon corrosion of the gas diffusion layer in polymer electrolyte membrane fuel cells
    Ha, Taehun
    Cho, Junhyun
    Park, Jaeman
    Min, Kyoungdoug
    Kim, Han-Sang
    Lee, Eunsook
    Jyoung, Jy-Young
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (19) : 12436 - 12443