Ultra-high fuel utilization in polymer electrolyte fuel cells part I: An experimental study

被引:2
|
作者
Yang, X. G. [1 ,2 ]
Wang, Y. [1 ,2 ]
Wang, C. Y. [1 ,2 ]
机构
[1] Penn State Univ, Electrochem Engine Ctr, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Fuel utilization; low stoichiometry; operation stability; water management; hydrogen; fuel cells; CURRENT DISTRIBUTIONS; RECIRCULATION SYSTEM; WATER MANAGEMENT; TRANSPORT; ANODE;
D O I
10.1080/15435075.2021.1941041
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, a high fuel utilization approach for polymer electrolyte fuel cells (PEFC) is proposed and studied experimentally. This approach uses an ultra-low hydrogen stoichiometry supply (i.e., xi(a) = 1.02) meanwhile sustaining stable cell performance. Systematic experiments showed the feasibility of high fuel utilization approach under different pressures and hydrogen/air inlet humidification conditions. It is indicated that the fuel cell is able to provide stable performance at a real fuel stoichiometry xi(a) = 1.02 under high-current density operation. For all the tests at xi(a)/xi(c) = 1.5/2.0 or 1.02/2.0, there exist unstable operation regimes typically in low power conditions. The instability as a result of flooding is affected mainly by air stoichiometry and less by fuel stoichiometry.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 50 条
  • [21] Experimental study on water transport in membrane humidifiers for polymer electrolyte membrane fuel cells
    Wolfenstetter, Florian
    Kreitmeir, Michael
    Schoenfeld, Ladislaus
    Klein, Harald
    Becker, Marc
    Rehfeldt, Sebastian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23381 - 23392
  • [22] An experimental study on the placement of reference electrodes in alkaline polymer electrolyte membrane fuel cells
    Zeng, Rong
    Slade, Robert C. T.
    Varcoe, John R.
    ELECTROCHIMICA ACTA, 2010, 56 (01) : 607 - 619
  • [23] High performance direct methanol polymer electrolyte fuel cells
    Ren, XM
    Wilson, MS
    Gottesfeld, S
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) : L12 - L15
  • [24] Advances in the high performance polymer electrolyte membranes for fuel cells
    Zhang, Hongwei
    Shen, Pei Kang
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) : 2382 - 2394
  • [25] Water distribution in high temperature polymer electrolyte fuel cells
    Reimer, Uwe
    Ehlert, Jannik
    Janssen, Holger
    Lehnert, Werner
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (03) : 1837 - 1845
  • [26] Modeling polymer electrolyte fuel cells: A high precision analysis
    Zhang, S.
    Reimer, U.
    Beale, S. B.
    Lehnert, W.
    Stolten, D.
    APPLIED ENERGY, 2019, 233 : 1094 - 1103
  • [27] Evaluation of Electrolyte Additives for High-Temperature Polymer Electrolyte Fuel Cells
    Mack, Florian
    Galbiati, Samuele
    Gogel, Viktor
    Joerissen, Ludwig
    Zeis, Roswitha
    CHEMELECTROCHEM, 2016, 3 (05): : 770 - 773
  • [28] Effect of Humidification Temperature on Air Utilization Properties of Polymer Electrolyte Fuel Cells
    Hariyama, Suguru
    Sasou, Hidetoshi
    Abe, Satoshi
    Nishikawa, Hisao
    Sugawara, Toshikazu
    Aoki, Tsutomu
    Ogami, Yasuji
    ELECTRICAL ENGINEERING IN JAPAN, 2009, 166 (03) : 18 - 26
  • [29] Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells
    Cheng, XL
    Yi, BL
    Han, M
    Zhang, JX
    Qiao, YG
    Yu, JR
    JOURNAL OF POWER SOURCES, 1999, 79 (01) : 75 - 81
  • [30] Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation
    Zhang, S.
    Reimer, U.
    Rahim, Y.
    Beale, S. B.
    Lehnert, W.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2019, 16 (03)