Elliptic curves with isomorphic groups of points over finite field extensions

被引:4
|
作者
Heuberger, Clemens [1 ]
Mazzoli, Michela [1 ]
机构
[1] Alpen Adria Univ Klagenfurt, Klagenfurt, Austria
基金
奥地利科学基金会;
关键词
Elliptic curve; Rational points; Finite field; Field extension; Isomorphism; Isogeny; Valuation;
D O I
10.1016/j.jnt.2017.05.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a pair of ordinary elliptic curves E and E' defined over the same finite field F-q. Suppose they have the same number of F-q-rational points, i.e. vertical bar E(F-q)vertical bar = vertical bar E'(F-q)vertical bar. In this paper we characterise for which finite field extensions F(q)k k >= 1 (if any) the corresponding groups of F(q)k-rational points are isomorphic, i.e. E(F(q)k) congruent to (F(q)k). (C) 2017 The Author(s). Published by Elsevier Inc.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [31] Constructing elliptic curves with a known number of points over a prime field
    Agashe, A
    Lauter, K
    Venkatesan, R
    HIGH PRIMES AND MISDEMEANOURS: LECTURES IN HONOUR OF THE 60TH BIRTHDAY OF HUGH COWIE WILLIAMS, 2004, 41 : 1 - 17
  • [32] The critical groups of a family of graphs and elliptic curves over finite fields
    Gregg Musiker
    Journal of Algebraic Combinatorics, 2009, 30 : 255 - 276
  • [33] The critical groups of a family of graphs and elliptic curves over finite fields
    Musiker, Gregg
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (02) : 255 - 276
  • [34] Embeddings of finite classical groups over field extensions and their geometry
    Cossidente, A
    King, OH
    ADVANCES IN GEOMETRY, 2002, 2 (01) : 13 - 27
  • [35] The distribution of the number of points modulo an integer on elliptic curves over finite fields
    Castryck, Wouter
    Hubrechts, Hendrik
    RAMANUJAN JOURNAL, 2013, 30 (02): : 223 - 242
  • [36] The distribution of the number of points modulo an integer on elliptic curves over finite fields
    Wouter Castryck
    Hendrik Hubrechts
    The Ramanujan Journal, 2013, 30 : 223 - 242
  • [37] Fine Selmer groups of elliptic curves over p-adic Lie extensions
    J. Coates
    R. Sujatha
    Mathematische Annalen, 2005, 331 : 809 - 839
  • [38] Reciprocal polynomials and curves with many points over a finite field
    Gupta, Rohit
    Mendoza, Erik A. R.
    Quoos, Luciane
    RESEARCH IN NUMBER THEORY, 2023, 9 (03)
  • [39] Fine Selmer groups of elliptic curves over p-adic Lie extensions
    Coates, J
    Sujatha, R
    MATHEMATISCHE ANNALEN, 2005, 331 (04) : 809 - 839
  • [40] Rational curves with many rational points over a finite field
    Fukasawa, Satoru
    Homma, Masaaki
    Kim, Seon Jeong
    ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2012, 574 : 37 - +