Elliptic curves with isomorphic groups of points over finite field extensions

被引:4
|
作者
Heuberger, Clemens [1 ]
Mazzoli, Michela [1 ]
机构
[1] Alpen Adria Univ Klagenfurt, Klagenfurt, Austria
基金
奥地利科学基金会;
关键词
Elliptic curve; Rational points; Finite field; Field extension; Isomorphism; Isogeny; Valuation;
D O I
10.1016/j.jnt.2017.05.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a pair of ordinary elliptic curves E and E' defined over the same finite field F-q. Suppose they have the same number of F-q-rational points, i.e. vertical bar E(F-q)vertical bar = vertical bar E'(F-q)vertical bar. In this paper we characterise for which finite field extensions F(q)k k >= 1 (if any) the corresponding groups of F(q)k-rational points are isomorphic, i.e. E(F(q)k) congruent to (F(q)k). (C) 2017 The Author(s). Published by Elsevier Inc.
引用
下载
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [11] ELLIPTIC CURVES MAXIMAL OVER EXTENSIONS OF FINITE BASE FIELDS
    Anema, A. S., I
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 453 - 465
  • [12] Heegner points and the arithmetic of elliptic curves over ring class extensions
    Bradshaw, Robert
    Stein, William
    JOURNAL OF NUMBER THEORY, 2012, 132 (08) : 1707 - 1719
  • [13] TORSION POINTS ON ELLIPTIC CURVES OVER A GLOBAL FIELD
    ZIMMER, HG
    MANUSCRIPTA MATHEMATICA, 1979, 29 (2-4) : 119 - 145
  • [14] Curves over finite fields with many rational points obtained by ray class field extensions
    Auer, R
    ALGORITHMIC NUMBER THEORY, 2000, 1838 : 127 - 134
  • [15] Elliptic curves over finite fields with Fibonacci numbers of points
    Bilu, Yuri
    Gomez, Carlos A.
    Gomez, Jhonny C.
    Luca, Florian
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 711 - 734
  • [16] POINTS OF FINITE ORDER ON ELLIPTIC CURVES OVER NUMBER FIELDS
    ZIMMER, HG
    ARCHIV DER MATHEMATIK, 1976, 27 (06) : 596 - 603
  • [17] Elliptic curves with a given number of points over finite fields
    David, Chantal
    Smith, Ethan
    COMPOSITIO MATHEMATICA, 2013, 149 (02) : 175 - 203
  • [18] Construction of rational points on elliptic curves over finite fields
    Shallue, Andrew
    van de Woestijne, Christiaan E.
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 510 - 524
  • [19] Torsion groups of elliptic curves over the Zp-extensions of Q
    Chou, Michael
    Daniels, Harris B.
    Krijan, Ivan
    Najman, Filip
    NEW YORK JOURNAL OF MATHEMATICS, 2021, 27 : 99 - 123
  • [20] INTEGER POINTS ON SOME SPECIAL HYPER-ELLIPTIC CURVES OVER A FINITE-FIELD
    CHOWLA, P
    CHOWLA, S
    JOURNAL OF NUMBER THEORY, 1976, 8 (03) : 280 - 281