Zipf's law and the universality class of the fragmentation phase transition

被引:0
|
作者
Bauer, Wolfgang [1 ]
Pratt, Scott [1 ,2 ]
Allernan, Brandon [3 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA
[3] Hope Coll, Holland, MI 49423 USA
基金
美国国家科学基金会;
关键词
fragmentation; phase transition; universality class; critical exponent; power law;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that Zipf's Law for the largest clusters is not valid in an exact sense at the critical point of the fragmentation phase transition, contrary to previous claims. Instead, the extracted distributions of the largest clusters reflects the choice of universality class through the value of the critical exponent tau.
引用
收藏
页码:327 / +
页数:2
相关论文
共 50 条
  • [31] Zipf’s law—another view
    Ioan-Iovitz Popescu
    Gabriel Altmann
    Reinhard Köhler
    Quality & Quantity, 2010, 44 : 713 - 731
  • [32] Zipf's law for atlas models
    Fernholz, Ricardo T.
    Fernholz, Robert
    JOURNAL OF APPLIED PROBABILITY, 2020, 57 (04) : 1276 - 1297
  • [33] Snooker Statistics and Zipf's Law
    Hordijk, Wim
    STATS, 2022, 5 (04): : 985 - 992
  • [34] Dynamical approach to Zipf's law
    De Marzo, Giordano
    Gabrielli, Andrea
    Zaccaria, Andrea
    Pietronero, Luciano
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [35] Zipf's Law for Web Surfers
    Mark Levene
    José Borges
    George Loizou
    Knowledge and Information Systems, 2001, 3 (1) : 120 - 129
  • [36] Concentration indices and Zipf's law
    Naldi, M
    ECONOMICS LETTERS, 2003, 78 (03) : 329 - 334
  • [37] Zipf's law for cities: An explanation
    Gabaix, X
    QUARTERLY JOURNAL OF ECONOMICS, 1999, 114 (03): : 739 - 767
  • [38] Zipf's law and the growth of cities
    Gabaix, X
    AMERICAN ECONOMIC REVIEW, 1999, 89 (02): : 129 - 132
  • [39] Territorial Planning and Zipf's Law
    Kabanov, V. N.
    ECONOMIC AND SOCIAL CHANGES-FACTS TRENDS FORECAST, 2019, 12 (02) : 103 - 114
  • [40] A GEOGRAPHICAL THEORY FOR ZIPF'S LAW
    Pumain, Denise
    REGION ET DEVELOPPEMENT, 2012, (36): : 31 - 54