Zipf's law and the universality class of the fragmentation phase transition

被引:0
|
作者
Bauer, Wolfgang [1 ]
Pratt, Scott [1 ,2 ]
Allernan, Brandon [3 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Michigan State Univ, Natl Supercond Cyclotron Lab, E Lansing, MI 48824 USA
[3] Hope Coll, Holland, MI 49423 USA
基金
美国国家科学基金会;
关键词
fragmentation; phase transition; universality class; critical exponent; power law;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that Zipf's Law for the largest clusters is not valid in an exact sense at the critical point of the fragmentation phase transition, contrary to previous claims. Instead, the extracted distributions of the largest clusters reflects the choice of universality class through the value of the critical exponent tau.
引用
收藏
页码:327 / +
页数:2
相关论文
共 50 条
  • [21] Unzipping Zipf's law
    Lada Adamic
    Nature, 2011, 474 : 164 - 165
  • [22] Zipf's Law in Passwords
    Wang, Ding
    Cheng, Haibo
    Wang, Ping
    Huang, Xinyi
    Jian, Gaopeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2017, 12 (11) : 2776 - 2791
  • [23] Universality class of a reentrant phase transition in a frustrated Ising model
    Asakawa, Hitoshi
    Suzuki, Masuo
    Physica A: Statistical Mechanics and its Applications, 1996, 229 (3-4): : 552 - 562
  • [24] Universality class of a displacive structural phase transition in two dimensions
    Vink, Richard L. C.
    PHYSICAL REVIEW E, 2018, 98 (06)
  • [25] Universality class of a reentrant phase transition in a frustrated Ising model
    Asakawa, H
    Suzuki, M
    PHYSICA A, 1996, 229 (3-4): : 552 - 562
  • [26] Zipf's law unzipped
    Baek, Seung Ki
    Bernhardsson, Sebastian
    Minnhagen, Petter
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [27] Universality Class of the Mott Transition
    Abdel-Jawad, M.
    Kato, R.
    Watanabe, I.
    Tajima, N.
    Ishii, Y.
    PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [28] New Universality Class for the Fragmentation of Plastic Materials
    Timar, G.
    Bloemer, J.
    Kun, F.
    Herrmann, H. J.
    PHYSICAL REVIEW LETTERS, 2010, 104 (09)
  • [29] Universality in a class of fragmentation-coalescence processes
    Kyprianou, A. E.
    Pagett, S. W.
    Rogers, T.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02): : 1134 - 1151
  • [30] Mandelbrot's Model for Zipf's Law Can Mandelbrot's Model Explain Zipf's Law for Language?
    Manin, D. Yu.
    JOURNAL OF QUANTITATIVE LINGUISTICS, 2009, 16 (03) : 274 - 285