μSR studies of the kagome antiferromagnet (H3O)Fe3(OH)6(SO4)2

被引:15
|
作者
Harrison, A
Kojima, KM
Wills, AS
Fudamato, Y
Larkin, MI
Luke, GM
Nachumi, B
Uemura, YJ
Visser, D
Lord, JS
机构
[1] Univ Edinburgh, Dept Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[4] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
来源
PHYSICA B | 2000年 / 289卷
基金
英国工程与自然科学研究理事会;
关键词
muon-spin relaxation; magnetic frustration; Kagome antiferromagnet;
D O I
10.1016/S0921-4526(00)00371-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Heisenberg kagome antiferromagnet is a frustrated system that provides a simple model for the study of strongly fluctuating magnets with a highly degenerate ground state. Hydronium jarosite, (H3O)Fe-3(OH)(6)(SO4)(2) possesses a kagome lattice of Fe3+ ions that behave as S = 5/2 Heisenberg moments coupled through strong antiferromagnetic exchange. DC susceptibility measurements reveal a spin-glass-like transition at T-f congruent to 15 K. We have performed muon-spin relaxation (mu SR) measurements on this material to elucidate the nature of this transition. Well above T-f, the muon depolarisation adopts a simple exponential form, becoming a stretched exponential with exponent beta approaching 0.5 as T --> T-f. On cooling further, beta drops further to 1/3, and the depolarisation adopts a dynamic Kubo-Toyabe form which may be decoupled by applied longitudinal fields of the order of 5 kC. We estimate the upper limit of the static component of the moment to be 3.4 mu(B) per iron ion, compared with a value of congruent to 5.92 mu(B) expected for high-spin Fe3+. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:217 / 220
页数:4
相关论文
共 50 条
  • [41] Mallestigite Pb3Sb(SO4)(ASO4)(OH)6•3H2O
    不详
    CANADIAN MINERALOGIST, 2003, 41 : 1314 - 1314
  • [42] HYDROLYSIS IN AL2(SO4)3-FE2(SO4)3-K2SO4-H2O SYSTEM
    MARYANCH.LV
    ZAPOLSKI.AK
    SAZHIN, VS
    ZHURNAL PRIKLADNOI KHIMII, 1973, 46 (04) : 918 - 920
  • [43] Synthesis and crystal structures of yttrium sulfates Y(OH)(SO4), Y(SO4)F, YNi(OH)3(SO4)-II and Y2Cu(OH)3(SO4)2F• H2O
    Wang, XQ
    Liu, LM
    Ross, K
    Jacobson, AJ
    SOLID STATE SCIENCES, 2000, 2 (01) : 109 - 118
  • [44] Schaurteite, Ca3Ge(SO4)(2)(OH)(6)center dot 3H(2)O
    Origlieri, Marcus J.
    Downs, Robert T.
    ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS, 2013, 69 : I6 - +
  • [45] Thermodynamic properties of kornelite (Fe2(SO4)3•∼7.75H2O) and paracoquimbite (Fe2(SO4)3•9H2O)
    Ackermann, S.
    Lazic, B.
    Armbruster, T.
    Doyle, S.
    Grevel, K. -D.
    Majzlan, J.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A9 - A9
  • [46] Reversible transformation from amorphouse Na3Fe3(SO4)2(OH)6 to crystallized NaFe3(SO4)2(OH)6 Jarosite-type hydroxysulfate
    Gnanavel, M.
    Lebedev, O. I.
    Bazin, P.
    Raveau, B.
    Pralong, V.
    SOLID STATE IONICS, 2015, 278 : 38 - 42
  • [47] High-Field Magnetism of the S=5/2 Kagome-Lattice Antiferromagnet KFe3(OH)6(SO4)2 for the Magnetic Field in the Kagome-Plane
    T. Fujita
    M. Hagiwara
    H. Yamaguchi
    S. Kimura
    T. Kashiwagi
    K. Matan
    D. G. Nocera
    Y. S. Lee
    D. Grohol
    Journal of Low Temperature Physics, 2013, 170 : 242 - 247
  • [48] High-Field Magnetism of the S=5/2 Kagome-Lattice Antiferromagnet KFe3(OH)6(SO4)2 for the Magnetic Field in the Kagome-Plane
    Fujita, T.
    Hagiwara, M.
    Yamaguchi, H.
    Kimura, S.
    Kashiwagi, T.
    Matan, K.
    Nocera, D. G.
    Lee, Y. S.
    Grohol, D.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2013, 170 (5-6) : 242 - 247
  • [49] CRYSTAL DATA FOR AMMONIOJAROSITE - NH4FE3(OH)6(SO4)2
    SMITH, WL
    LAMPERT, JE
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1973, 6 (DEC1) : 490 - 491
  • [50] Successive Crystallization of Organically Templated Uranyl Sulfates: Synthesis and Crystal Structures of [pyH](H3O)[(UO2)3(SO4)4(H2O)2], [pyH]2[(UO2)6(SO4)7(H2O)], and [pyH]2[(UO2)2(SO4)3]
    Nazarchuk, Evgeny V.
    Charkin, Dmitri O.
    Siidra, Oleg I.
    CHEMENGINEERING, 2021, 5 (01) : 1 - 8