μSR studies of the kagome antiferromagnet (H3O)Fe3(OH)6(SO4)2

被引:15
|
作者
Harrison, A
Kojima, KM
Wills, AS
Fudamato, Y
Larkin, MI
Luke, GM
Nachumi, B
Uemura, YJ
Visser, D
Lord, JS
机构
[1] Univ Edinburgh, Dept Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[4] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
来源
PHYSICA B | 2000年 / 289卷
基金
英国工程与自然科学研究理事会;
关键词
muon-spin relaxation; magnetic frustration; Kagome antiferromagnet;
D O I
10.1016/S0921-4526(00)00371-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Heisenberg kagome antiferromagnet is a frustrated system that provides a simple model for the study of strongly fluctuating magnets with a highly degenerate ground state. Hydronium jarosite, (H3O)Fe-3(OH)(6)(SO4)(2) possesses a kagome lattice of Fe3+ ions that behave as S = 5/2 Heisenberg moments coupled through strong antiferromagnetic exchange. DC susceptibility measurements reveal a spin-glass-like transition at T-f congruent to 15 K. We have performed muon-spin relaxation (mu SR) measurements on this material to elucidate the nature of this transition. Well above T-f, the muon depolarisation adopts a simple exponential form, becoming a stretched exponential with exponent beta approaching 0.5 as T --> T-f. On cooling further, beta drops further to 1/3, and the depolarisation adopts a dynamic Kubo-Toyabe form which may be decoupled by applied longitudinal fields of the order of 5 kC. We estimate the upper limit of the static component of the moment to be 3.4 mu(B) per iron ion, compared with a value of congruent to 5.92 mu(B) expected for high-spin Fe3+. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:217 / 220
页数:4
相关论文
共 50 条
  • [33] Synthesis and structure of acid transition metal sulfates - Ti(H5O2)(SO4)(2)(H2O)(2) and Zr(H3O)(2)(SO4)(3)
    Trojanov, S
    Stiewe, A
    Kemnitz, E
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES, 1996, 51 (01): : 19 - 24
  • [34] SOLUBILITY STUDIES IN SYSTEMS FE2(SO4)3-CUSO4-H2O AND FE2(SO4)3-CUSO4-H2SO4-H2O AT 25 DEGREES C
    BABAYAN, GG
    MKHITARY.RS
    PANOSYAN, GS
    SHAKHNAZ.AA
    ARMYANSKII KHIMICHESKII ZHURNAL, 1973, 26 (04): : 283 - 287
  • [35] Thermodynamic properties of tooeleite, Fe63+As3+O3)4(SO4)(OH)4.4H2O
    Majzlan, Juraj
    Dachs, Edgar
    Benisek, Artur
    Koch, Christian Bender
    Bolanz, Ralph
    Goettlicher, Joerg
    Steininger, Ralph
    CHEMIE DER ERDE-GEOCHEMISTRY, 2016, 76 (03) : 419 - 428
  • [36] Redetermination of despujolsite, Ca3Mn4+(SO4)2(OH)6•3H2O
    Barkley, Madison C.
    Yang, Hexiong
    Evans, Stanley H.
    Downs, Robert T.
    Origlieri, Marcus J.
    ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE, 2011, 67 : I47 - U145
  • [37] Acidic sulfates of neodymium:: Synthesis and crystal structure of (H5O2)(H3O)2Nd(SO4)3 and (H3O)2Nd(HSO4)3SO4
    Wickleder, MS
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 1999, 625 (03): : 474 - 480
  • [38] Syntheses and Structures of Na2Mg3(OH)2(SO4)3•4H2O and K2Mg3(OH)2(SO4)3•2H2O
    Kubel, Frank
    Cabaret-Lampin, Marie
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2013, 639 (10): : 1782 - 1786
  • [39] High-field multifrequency ESR in the S=5/2 kagome-lattice antiferromagnet KFe3(OH)6(SO4)2
    Fujita, T.
    Yamaguchi, H.
    Kimura, S.
    Kashiwagi, T.
    Hagiwara, M.
    Matan, K.
    Grohol, D.
    Nocera, D. G.
    Lee, Y. S.
    PHYSICAL REVIEW B, 2012, 85 (09)
  • [40] The Role of the Bi3+ Lone Pair Effect in Bi(H3O)(SO4)2, Bi(HSO4)3, and Bi2(SO4)3
    Haemmer, Matthias
    Brgoch, Jakoah
    Netzsch, Philip
    Hoeppe, Henning A.
    INORGANIC CHEMISTRY, 2022, 61 (09) : 4102 - 4113