A new kind of blowing-up solutions for the Brezis-Nirenberg problem

被引:7
|
作者
Vaira, Giusi [1 ]
机构
[1] Dipartimento Sci Base & Applicate Ingn, Sez Matemat, I-00185 Rome, Italy
关键词
CRITICAL SOBOLEV EXPONENT; SIGN-CHANGING SOLUTIONS; SUPERCRITICAL NONLINEAR PROBLEM; ELLIPTIC-EQUATIONS; CRITICAL GROWTH; NODAL SOLUTIONS; DIMENSION; NONEXISTENCE; EXISTENCE; DOMAIN;
D O I
10.1007/s00526-014-0716-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Brezis-Nirenberg problem in a bounded domain with nontrivial topology and smooth boundary and we prove the existence of a new type of positive and sign-changing solution in a "subcritical" and in a "supercritical" setting. We remark that this is the first result of existence of a sign-changing solution in "the supercritical" case.
引用
收藏
页码:389 / 422
页数:34
相关论文
共 50 条
  • [1] A new kind of blowing-up solutions for the Brezis-Nirenberg problem
    Giusi Vaira
    Calculus of Variations and Partial Differential Equations, 2015, 52 : 389 - 422
  • [2] Sign-changing blowing-up solutions for the Brezis-Nirenberg problem in dimensions four and five
    Iacopetti, Alessandro
    Vaira, Giusi
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (01) : 1 - 38
  • [3] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [4] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [5] New numerical solutions for the Brezis-Nirenberg problem on Sn
    Bandle, C
    Stingelin, S
    Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 13 - 21
  • [6] On the Brezis-Nirenberg Problem
    Schechter, M.
    Zou, Wenming
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 337 - 356
  • [7] THE NUMBER OF POSITIVE SOLUTIONS TO THE BREZIS-NIRENBERG PROBLEM
    Cao, Daomin
    Luo, Peng
    Peng, Shuangjie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1947 - 1985
  • [8] SINGULAR SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Flores, Isabel
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) : 673 - 682
  • [9] Double blow-up solutions for a Brezis-Nirenberg type problem
    Musso, M
    Pistoia, A
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (05) : 775 - 802
  • [10] On the generalised Brezis-Nirenberg problem
    Anoop, T., V
    Das, Ujjal
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):