A new kind of blowing-up solutions for the Brezis-Nirenberg problem

被引:7
|
作者
Vaira, Giusi [1 ]
机构
[1] Dipartimento Sci Base & Applicate Ingn, Sez Matemat, I-00185 Rome, Italy
关键词
CRITICAL SOBOLEV EXPONENT; SIGN-CHANGING SOLUTIONS; SUPERCRITICAL NONLINEAR PROBLEM; ELLIPTIC-EQUATIONS; CRITICAL GROWTH; NODAL SOLUTIONS; DIMENSION; NONEXISTENCE; EXISTENCE; DOMAIN;
D O I
10.1007/s00526-014-0716-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Brezis-Nirenberg problem in a bounded domain with nontrivial topology and smooth boundary and we prove the existence of a new type of positive and sign-changing solution in a "subcritical" and in a "supercritical" setting. We remark that this is the first result of existence of a sign-changing solution in "the supercritical" case.
引用
收藏
页码:389 / 422
页数:34
相关论文
共 50 条
  • [31] CRITICAL BREZIS-NIRENBERG PROBLEM FOR NONLOCAL SYSTEMS
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 50 (01) : 333 - 355
  • [32] Brezis-Nirenberg problem and coron problem for polyharmonic operators
    Ge, YX
    ELLIPTIC AND PARABOLIC PROBLEMS: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 291 - 297
  • [33] THE BREZIS-NIRENBERG PROBLEM IN 4D
    Pistoia, Angela
    Rocci, Serena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (04): : 1562 - 1572
  • [34] On the Brezis-Nirenberg problem for the (p, q)-Laplacian
    Ho, Ky
    Perera, Kanishka
    Sim, Inbo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (04) : 1991 - 2005
  • [35] Positive solutions for a Kirchhoff problem of Brezis-Nirenberg type in dimension four
    Anello, Giovanni
    Vilasi, Luca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 251
  • [36] On the Brezis-Nirenberg Problem with a Kirchhoff Type Perturbation
    Naimen, Daisuke
    ADVANCED NONLINEAR STUDIES, 2015, 15 (01) : 135 - 156
  • [37] INFINITELY MANY SIGN-CHANGING SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Sun, Jijiang
    Ma, Shiwang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2317 - 2330
  • [38] Multiple solutions for the Brezis-Nirenberg problem with a Hardy potential and singular coefficients
    He, Xiaoming
    Zou, Wenming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 1025 - 1031
  • [39] The effect of a perturbation on Brezis-Nirenberg's problem
    Faria, Luiz Fernando de Oliveira
    Silva, Jeferson Camilo
    Ubilla, Pedro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [40] An integral type Brezis-Nirenberg problem on the Heisenberg group
    Han, Yazhou
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (05) : 4544 - 4565