Transfer Learning on Deep Neural Networks to Detect Pornography

被引:0
|
作者
Albahli, Saleh [1 ]
机构
[1] Qassim Univ, Coll Comp, Dept Informat Technol, Buraydah, Saudi Arabia
来源
关键词
Pornographic video detection classification; convolutional neural network; InceptionV3; Resnet50; VGG16;
D O I
10.32604/csse.2022.022723
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
While the internet has a lot of positive impact on society, there are negative components. Accessible to everyone through online platforms, pornography is, inducing psychological and health related issues among people of all ages. While a difficult task, detecting pornography can be the important step in determining the porn and adult content in a video. In this paper, an architecture is proposed which yielded high scores for both training and testing. This dataset was produced from 190 videos, yielding more than 19 h of videos. The main sources for the content were from YouTube, movies, torrent, and websites that hosts both pornographic and non-pornographic contents. The videos were from different ethnicities and skin color which ensures the models can detect any kind of video. A VGG16, Inception V3 and Resnet 50 models were initially trained to detect these pornographic images but failed to achieve a high testing accuracy with accuracies of 0.49, 0.49 and 0.78 respectively. Finally, utilizing transfer learning, a convolutional neural network was designed and yielded an accuracy of 0.98.
引用
收藏
页码:701 / 717
页数:17
相关论文
共 50 条
  • [21] Deep neural networks and transfer learning applied to multimedia web mining
    Lopez-Sanchez, Daniel
    Gonzalez Arrieta, Angelica
    Corchado, Juan M.
    DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2018, 620 : 124 - 131
  • [22] Transfer Learning from Deep Neural Networks for Predicting Student Performance
    Tsiakmaki, Maria
    Kostopoulos, Georgios
    Kotsiantis, Sotiris
    Ragos, Omiros
    APPLIED SCIENCES-BASEL, 2020, 10 (06):
  • [23] Deep neural networks with transfer learning model for brain tumors classification
    Bulla P.
    Anantha L.
    Peram S.
    Bulla, Premamayudu (drbpm_it@vignan.ac.in), 1600, International Information and Engineering Technology Association (37): : 593 - 601
  • [24] Transfer Learning for Maritime Vessel Detection using Deep Neural Networks
    Farahnakian, Fahimeh
    Zelioli, Luca
    Heikkonen, Jukka
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1 - 6
  • [25] Deep Neural Networks and Transfer Learning on a Multivariate Physiological Signal Dataset
    Bizzego, Andrea
    Gabrieli, Giulio
    Esposito, Gianluca
    BIOENGINEERING-BASEL, 2021, 8 (03):
  • [26] Music Genre Recognition using Deep Neural Networks and Transfer Learning
    Ghosal, Deepanway
    Kolekar, Maheshkumar H.
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 2087 - 2091
  • [27] Transfer Learning for Arabic Named Entity Recognition With Deep Neural Networks
    Al-Smadi, Mohammad
    Al-Zboon, Saad
    Jararweh, Yaser
    Juola, Patrick
    IEEE ACCESS, 2020, 8 : 37736 - 37745
  • [28] A Transfer Approach Using Graph Neural Networks in Deep Reinforcement Learning
    Yang, Tianpei
    You, Heng
    Hao, Jianye
    Zheng, Yan
    Taylor, Matthew E.
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16352 - 16360
  • [29] Deep Convolutional Neural Networks with Transfer Learning for Visual Sentiment Analysis
    K. Usha Kingsly Devi
    V. Gomathi
    Neural Processing Letters, 2023, 55 : 5087 - 5120
  • [30] Transfer Learning for Molecular Cancer Classification Using Deep Neural Networks
    Sevakula, Rahul K.
    Singh, Vikas
    Verma, Nishchal K.
    Kumar, Chandan
    Cui, Yan
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (06) : 2089 - 2100