Transfer Learning for Molecular Cancer Classification Using Deep Neural Networks

被引:70
|
作者
Sevakula, Rahul K. [1 ]
Singh, Vikas [1 ]
Verma, Nishchal K. [1 ]
Kumar, Chandan [2 ]
Cui, Yan [3 ]
机构
[1] Indian Inst Technol Kanpur, Dept Elect Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India
[3] Univ Tennessee, Ctr Hlth Sci, Dept Genet Genom & Informat, Memphis, TN 38163 USA
关键词
Transfer learning; cancer classification; deep neural network; stacked autoencoder; feature selection; SELECTION; MACHINE;
D O I
10.1109/TCBB.2018.2822803
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The emergence of deep learning has impacted numerous machine learning based applications and research. The reason for its success lies in two main advantages: 1) it provides the ability to learn very complex non-linear relationships between features and 2) it allows one to leverage information from unlabeled data that does not belong to the problem being handled. This paper presents a transfer learning procedure for cancer classification, which uses feature selection and normalization techniques in conjunction with s sparse auto-encoders on gene expression data. While classifying any two tumor types, data of other tumor types were used in unsupervised manner to improve the feature representation. The performance of our algorithm was tested on 36 two-class benchmark datasets from the GEMLeR repository. On performing statistical tests, it is clearly ascertained that our algorithm statistically outperforms several generally used cancer classification approaches. The deep learning based molecular disease classification can be used to guide decisions made on the diagnosis and treatment of diseases, and therefore may have important applications in precision medicine.
引用
收藏
页码:2089 / 2100
页数:12
相关论文
共 50 条
  • [1] Breast cancer masses classification using deep convolutional neural networks and transfer learning
    Shayma’a A. Hassan
    Mohammed S. Sayed
    Mahmoud I Abdalla
    Mohsen A. Rashwan
    Multimedia Tools and Applications, 2020, 79 : 30735 - 30768
  • [2] Breast cancer masses classification using deep convolutional neural networks and transfer learning
    Hassan, Shayma'a A.
    Sayed, Mohammed S.
    Abdalla, Mahmoud, I
    Rashwan, Mohsen A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (41-42) : 30735 - 30768
  • [3] Diabetic Retinopathy Recognition and Classification Using Transfer Learning Deep Neural Networks
    Mane, Deepak
    Ashtagi, Rashmi
    Suryawanshi, Ranjeetsingh
    Kaulage, Anant N.
    Hedaoo, Anushka N.
    Kulkarni, Prathamesh V.
    Gandhi, Yatin
    TRAITEMENT DU SIGNAL, 2024, 41 (05) : 2683 - 2691
  • [4] Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning
    Aljuaid, Hanan
    Alturki, Nazik
    Alsubaie, Najah
    Cavallaro, Lucia
    Liotta, Antonio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 223
  • [5] Chickpea varietal classification using deep convolutional neural networks with transfer learning
    Saha, Dhritiman
    Manickavasagan, Annamalai
    JOURNAL OF FOOD PROCESS ENGINEERING, 2022, 45 (03)
  • [6] A Transfer Learning Evaluation of Deep Neural Networks for Image Classification
    Abou Baker, Nermeen
    Zengeler, Nico
    Handmann, Uwe
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2022, 4 (01): : 22 - 41
  • [7] Breast Cancer Classification Using Deep Convolution Neural Network with Transfer Learning
    Mahmoud, Hanan A. Hosni
    Alharbi, Amal H.
    Khafga, Doaa S.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (03): : 803 - 814
  • [8] Bangladeshi Vehicle Classification and Detection Using Deep Convolutional Neural Networks With Transfer Learning
    Md Farid, Dewan
    Kumer Das, Proshanta
    Islam, Monirul
    Sina, Ebna
    IEEE ACCESS, 2025, 13 : 26429 - 26455
  • [9] Classification of Diabetic Retinopathy Disease with Transfer Learning using Deep Convolutional Neural Networks
    Somasundaram, Krishnamoorthy
    Sivakumar, Paulraj
    Suresh, Durairaj
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2021, 21 (03) : 49 - 56
  • [10] Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning
    Martinez, Matthew
    De Leon, Phillip L.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (01) : 144 - 150