Prediction of the flexural overstrength factor for steel beams using artificial neural network

被引:40
|
作者
Guneyisi, Esra Mete [1 ]
D'Aniello, Mario [2 ]
Landolfo, Raffaele [2 ]
Mermerdas, Kasim [3 ]
机构
[1] Gaziantep Univ, Dept Civil Engn, Gaziantep, Turkey
[2] Univ Naples Federico II, Dept Struct Engn & Architecture, Naples, Italy
[3] Hasan Kalyoncu Univ, Dept Civil Engn, Gaziantep, Turkey
来源
STEEL AND COMPOSITE STRUCTURES | 2014年 / 17卷 / 03期
关键词
experimental database; flexural overstrength; modeling; neural networks; steel beams; GENETIC ALGORITHM; BEHAVIOR; DESIGN; FRAMES; TESTS;
D O I
10.12989/scs.2014.17.3.215
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The flexural behaviour of steel beams significantly affects the structural performance of the steel frame structures. In particular, the flexural overstrength (namely the ratio between the maximum bending moment and the plastic bending strength) that steel beams may experience is the key parameter affecting the seismic design of non-dissipative members in moment resisting frames. The aim of this study is to present a new formulation of flexural overstrength factor for steel beams by means of artificial neural network (NN). To achieve this purpose, a total of 141 experimental data samples from available literature have been collected in order to cover different cross-sectional typologies, namely I-H sections, rectangular and square hollow sections (RHS-SHS). Thus, two different data sets for I-H and RHS-SHS steel beams were formed. Nine critical prediction parameters were selected for the former while eight parameters were considered for the latter. These input variables used for the development of the prediction models are representative of the geometric properties of the sections, the mechanical properties of the material and the shear length of the steel beams. The prediction performance of the proposed NN model was also compared with the results obtained using an existing formulation derived from the gene expression modeling. The analysis of the results indicated that the proposed formulation provided a more reliable and accurate prediction capability of beam overstrength.
引用
收藏
页码:215 / 236
页数:22
相关论文
共 50 条
  • [41] POSTTRANSPLANT TUBERCULOSIS PREDICTION USING ARTIFICIAL NEURAL NETWORK
    Starostina, Anna
    Parabina, Elena
    Maslikova, Ulyana
    Tsygankov, Igor
    Yaremin, Boris
    TRANSPLANT INTERNATIONAL, 2019, 32 : 413 - 413
  • [42] Prediction of extrusion pressure using an artificial neural network
    Li, YY
    Bridgwater, J
    POWDER TECHNOLOGY, 2000, 108 (01) : 65 - 73
  • [43] Using artificial neural network for reservoir eutrophication prediction
    Kuo, Jan-Tai
    Hsieh, Ming-Han
    Lung, Wu-Seng
    She, Nian
    ECOLOGICAL MODELLING, 2007, 200 (1-2) : 171 - 177
  • [44] Prediction of Egg Production Using Artificial Neural Network
    Ghazanfari, S.
    Nobari, K.
    Tahmoorespur, M.
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2011, 1 (01): : 11 - 16
  • [45] Prediction of rubber vulcanization using an artificial neural network
    Lubura, Jelena D.
    Kojic, Predrag
    Pavlicevic, Jelena
    Ikonic, Bojana
    Omorjan, Radovan
    Bera, Oskar
    HEMIJSKA INDUSTRIJA, 2021, 75 (05) : 277 - 283
  • [46] SRAF Printing Prediction Using Artificial Neural Network
    Kwon, Yonghwi
    Yang, Jinho
    Kim, Sungho
    Kim, CheolKyun
    Shin, Youngsoo
    OPTICAL MICROLITHOGRAPHY XXXIII, 2021, 11327
  • [47] Prediction of the plasma distribution using an artificial neural network
    Li Wei
    Chen Jun-Fang
    Wang Teng
    CHINESE PHYSICS B, 2009, 18 (06) : 2441 - 2444
  • [48] Prediction of air pollutants by using an artificial neural network
    Sang Hyun Sohn
    Sea Cheon Oh
    Yeong-Koo Yeo
    Korean Journal of Chemical Engineering, 1999, 16 : 382 - 387
  • [49] Prediction of turbojet performance by using artificial neural network
    Mohammed, Mortda
    Taher, Maher K.
    Khudhair, Saleh
    MATERIALS TODAY-PROCEEDINGS, 2022, 60 : 1513 - 1522
  • [50] Thermal cracking prediction using artificial neural network
    Zeghal, M.
    PAVEMENT CRACKING: MECHANISMS, MODELING, DETECTION, TESTING AND CASE HISTORIES, 2008, : 379 - 386