Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys

被引:23
|
作者
Bundela, Amit Singh [1 ]
Rahul, M. R. [1 ]
机构
[1] Indian Inst Technol ISM, Dept Fuel Minerals & Met Engn, Dhanbad 826004, Jharkhand, India
关键词
Microhardness; High entropy alloys; Feature selection; Machine learning; Principal component analysis; Materials informatics; SELECTION;
D O I
10.1016/j.jallcom.2021.164578
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Prediction of properties of new compositions will accelerate the material design and development. The current study uses a machine learning framework to predict the microhardness of high entropy alloys. Several feature selection algorithms are used to identify the essential material descriptors. The stability selection algorithm gives optimum material descriptors for the current dataset for the microhardness prediction. Eight different machine learning algorithms are trained and tested for microhardness prediction. The accuracy of prediction improved by reducing the higher-dimensional data to lower dimensions using principal component analysis. The current study shows the testing R-2 score of more than 0.89 for XGBoost, Random forest, and Bagging regressor algorithms. Experimental data confirms the applicability of various trained algorithms for property prediction, and for the current study, ANN shows better performance for the new experimental data. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys
    Bundela, Amit Singh
    Rahul, M.R.
    Journal of Alloys and Compounds, 2022, 908
  • [2] Machine learning-enabled identification of new medium to high entropy alloys with solid solution phases
    Jaiswal, Ujjawal Kumar
    Krishna, Yegi Vamsi
    Rahul, M. R.
    Phanikumar, Gandham
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [3] Prediction of mechanical properties of high entropy alloys based on machine learning
    Gao, Tinghong
    Wu, Qingqing
    Chen, Lei
    Liang, Yongchao
    Han, Yunjie
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [4] Machine learning-enabled high-entropy alloy discovery
    Rao, Ziyuan
    Tung, Po-Yen
    Xie, Ruiwen
    Wei, Ye
    Zhang, Hongbin
    Ferrari, Alberto
    Klaver, T. P. C.
    Koermann, Fritz
    Sukumar, Prithiv Thoudden
    da Silva, Alisson Kwiatkowski
    Chen, Yao
    Li, Zhiming
    Ponge, Dirk
    Neugebauer, Joerg
    Gutfleisch, Oliver
    Bauer, Stefan
    Raabe, Dierk
    SCIENCE, 2022, 378 (6615) : 78 - 84
  • [5] Machine learning-enabled prediction of high-temperature oxidation resistance for Ni-based alloys
    Li, Changheng
    Xu, Kai
    Lou, Ming
    Wang, Linjing
    Chang, Keke
    CORROSION SCIENCE, 2024, 234
  • [6] Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys
    Gao, Chan
    Yang, Xiaoyong
    Jiang, Ming
    Chen, Lixin
    Chen, Zhiwen
    Singh, Chandra Veer
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (07) : 4653 - 4665
  • [7] Machine Learning-Enabled Noncontact Sleep Structure Prediction
    Zhai, Qian
    Tang, Tingyu
    Lu, Xiaoling
    Zhou, Xiaoxi
    Li, Chunguang
    Yi, Jingang
    Liu, Tao
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (05)
  • [8] Improved machine learning framework for prediction of phases and crystal structures of high entropy alloys
    Dey, Debsundar
    Das, Suchandan
    Pal, Anik
    Dey, Santanu
    Raul, Chandan Kumar
    Mandal, Pritam
    Chatterjee, Arghya
    Chatterjee, Soumya
    Ghosh, Manojit
    Journal of Alloys and Metallurgical Systems, 2025, 9
  • [9] Breaking data barriers: advancing phase prediction in high entropy alloys through a new machine learning framework
    Choudhury, Amitava
    Kumar, Sandeep
    CANADIAN METALLURGICAL QUARTERLY, 2024,
  • [10] Machine learning-enabled prediction and optimization of hardness for Nb-Ti-V-Zr refractory high entropy alloy
    Hosseini, Seyedmehrab
    Vaghefi, Ehsan
    Lee, Chanho
    Prorok, Bart
    Mirkoohi, Elham
    MATERIALS TODAY COMMUNICATIONS, 2024, 40