Second-order non-linear optical response of metallo-organic compounds:: towards switchable materials

被引:46
|
作者
Gaudry, JB
Capes, L
Langot, P
Marcén, S
Kollmannsberger, M
Lavastre, O
Freysz, E
Létard, JF [1 ]
Kahn, O
机构
[1] CNRS, UPR 9048, Inst Chim Mat Condensee Bordeaux, Lab Sci Mol, F-33608 Pessac, France
[2] Univ Talence, Ctr Phys Mol Opt & Hertzienne, CNRS, UMR 5796, F-33405 Talence, France
[3] Espace Technol St Aubin, Motorola Ctr Rech, F-91193 Gif Sur Yvette, France
[4] Univ Rennes 1, Chim Coordinat Organ Lab, F-35042 Rennes, France
[5] CEA, CESTA, F-33114 Le Barp, France
关键词
D O I
10.1016/S0009-2614(00)00614-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A series of coordination compounds, [M(PM-L)(2)(NCS)(2)], with large aromatic ligands (PM-L) and a divalent metal ion (M-II = Mn, Fe, Co, Ni and Zn) have been synthesized. The magnetic data are consistent with divalent metal ions in an octahedral ligand field environment. Hyper-Rayleigh scattering measurements show an enhancement of the molecular hyperpolarizabilities (beta) from Ni compounds (with two unpaired electrons) to Mn compounds (five unpaired electrons). In the case of the Fe(LI) metal ion, the influence of the ligand on the beta values is reported. This work provides attractive information for the design of switchable materials based on the spin-crossover phenomenon. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 50 条
  • [41] Non-linear second-order periodic systems with non-smooth potential
    Papageorgiou, EH
    Papageorgiou, NS
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (03): : 269 - 298
  • [42] ORGANIC MATERIALS WITH NON-LINEAR OPTICAL-PROPERTIES
    DAVYDOV, BL
    ZOLIN, VF
    KORENEVA, LG
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1978, 23 (09): : 1987 - 1989
  • [43] The intermittent behavior of a second-order non-linear non-autonomous oscillator
    Stavrinides, S. G.
    Deliolanis, N. C.
    Laopoulos, Th.
    Kyprianidis, I. M.
    Miliou, A. N.
    Anagnostopoulos, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1191 - 1199
  • [44] Homogenization of non-linear second-order elliptic equations in perforated domains
    Zhikov, VV
    Rychago, ME
    [J]. IZVESTIYA MATHEMATICS, 1997, 61 (01) : 69 - 88
  • [45] A non-linear second-order stochastic model of ocean surface waves
    Joelson, M
    Ramamonjiarisoa, A
    [J]. OCEANOLOGICA ACTA, 2001, 24 (05) : 409 - 415
  • [46] SECOND-ORDER METHOD FOR STATE ESTIMATION OF NON-LINEAR DYNAMICAL SYSTEMS
    MAHALANABIS, AK
    FAROOQ, M
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1971, 14 (04) : 631 - +
  • [47] On Singularities of Certain Non-linear Second-Order Ordinary Differential Equations
    Galina Filipuk
    Thomas Kecker
    [J]. Results in Mathematics, 2022, 77
  • [48] On Singularities of Certain Non-linear Second-Order Ordinary Differential Equations
    Filipuk, Galina
    Kecker, Thomas
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (01)
  • [49] Second-order averaging and Melnikov analyses for forced non-linear oscillators
    Yagasaki, K
    [J]. JOURNAL OF SOUND AND VIBRATION, 1996, 190 (04) : 587 - 609
  • [50] Predicting non-linear torsional dynamics using second-order solutions
    Bi, T.
    Chen, W.
    Yang, Q.
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2012, 6 (04) : 331 - 338