The intermittent behavior of a second-order non-linear non-autonomous oscillator

被引:3
|
作者
Stavrinides, S. G. [1 ]
Deliolanis, N. C. [1 ]
Laopoulos, Th. [1 ]
Kyprianidis, I. M. [1 ]
Miliou, A. N. [2 ]
Anagnostopoulos, A. N. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Phys, Solid State Sect, GR-54124 Thessaloniki, Greece
[2] Aristotle Univ Thessaloniki, Dept Informat, GR-54124 Thessaloniki, Greece
关键词
D O I
10.1016/j.chaos.2006.07.049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The experimental time-series produced by a second-order non-linear, non-autonomous, closed-loop electronic circuit were recorded and subsequently evaluated. The correlation and embedding dimensions, as well as the corresponding Kolmogorov entropies of the oscillating system, have been numerically calculated and compared to the corresponding Lyapunov exponents. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1191 / 1199
页数:9
相关论文
共 50 条
  • [1] Internal crisis in a second-order non-linear non-autonomous electronic oscillator
    Stavrinides, S. G.
    Deliolanis, N. C.
    Miliou, A. N.
    Laopoulos, Th.
    Anagnostopouios, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (04) : 1055 - 1061
  • [2] APPROXIMATE SOLUTIONS OF NON-LINEAR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    BARKHAM, PGD
    SOUDACK, AC
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (01) : 101 - &
  • [3] Characterization of a non-autonomous second-order non-linear circuit for secure data transmission
    Miliou, A. N.
    Valaristos, A. P.
    Stavrinides, S. G.
    Kyritsi, K.
    Anagnostopoulos, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1248 - 1255
  • [4] Heteroclinic connections for fully non-linear non-autonomous second-order differential equations
    Marcelli, Cristina
    Papalini, Francesca
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) : 160 - 183
  • [5] CERTAIN PROBLEMS CONCERNING OSCILLATION OF SOLUTIONS TO NON-LINEAR NON-AUTONOMOUS SECOND-ORDER EQUATIONS
    SHEVELO, VN
    SHTELIK, VG
    [J]. DOKLADY AKADEMII NAUK SSSR, 1963, 149 (02): : 276 - &
  • [6] FURTHER RESULTS ON APPROXIMATE SOLUTIONS OF NON-LINEAR, NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    SOUDACK, AC
    BARKHAM, PGD
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1970, 12 (05) : 763 - &
  • [7] Symplectic integrators for second-order linear non-autonomous equations
    Bader, Philipp
    Blanes, Sergio
    Casas, Fernando
    Kopylov, Nikita
    Ponsoda, Enrique
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 909 - 919
  • [8] The period doubling route to chaos of a second order non-linear non-autonomous chaotic oscillator - part I
    Stavrinides, SG
    Kyritsi, KG
    Deliolanis, NC
    Anagnostopoulos, AN
    Tamasevicious, A
    Cenys, A
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 20 (04) : 843 - 847
  • [9] NON-LINEAR, NON-AUTONOMOUS SYSTEMS OF FIRST ORDER
    DASARATHY, BV
    [J]. AUTOMATICA, 1970, 6 (06) : 813 - +
  • [10] HETEROCLINICS FOR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    Gavioli, A.
    Sanchez, L.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (9-10) : 999 - 1018