Symplectic integrators for second-order linear non-autonomous equations

被引:6
|
作者
Bader, Philipp [1 ]
Blanes, Sergio [2 ]
Casas, Fernando [3 ,4 ]
Kopylov, Nikita [2 ]
Ponsoda, Enrique [2 ]
机构
[1] La Trobe Univ, Dept Math & Stat, Bundoora, Vic 3086, Australia
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, Valencia, Spain
[3] Univ Jaume 1, IMAC, Castellon de La Plana 12071, Spain
[4] Univ Jaume 1, Dept Matemat, Castellon de La Plana 12071, Spain
关键词
Second-order linear differential equations; Non-autonomous; Symplectic integrators; Magnus expansion; Matrix Hill's equation; SPLITTING METHODS; ALGORITHMS; EFFICIENT;
D O I
10.1016/j.cam.2017.03.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two families of symplectic methods specially designed for second-order time-dependent linear systems are presented. Both are obtained from the Magnus expansion of the corresponding first-order equation, but otherwise they differ in significant aspects. The first family is addressed to problems with low to moderate dimension, whereas the second is more appropriate when the dimension is large, in particular when the system corresponds to a linear wave equation previously discretised in space. Several numerical experiments illustrate the main features of the new schemes. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:909 / 919
页数:11
相关论文
共 50 条
  • [1] HETEROCLINICS FOR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    Gavioli, A.
    Sanchez, L.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (9-10) : 999 - 1018
  • [2] APPROXIMATE SOLUTIONS OF NON-LINEAR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    BARKHAM, PGD
    SOUDACK, AC
    INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (01) : 101 - &
  • [3] Heteroclinic connections for fully non-linear non-autonomous second-order differential equations
    Marcelli, Cristina
    Papalini, Francesca
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (01) : 160 - 183
  • [4] CERTAIN PROBLEMS CONCERNING OSCILLATION OF SOLUTIONS TO NON-LINEAR NON-AUTONOMOUS SECOND-ORDER EQUATIONS
    SHEVELO, VN
    SHTELIK, VG
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (02): : 276 - &
  • [5] FURTHER RESULTS ON APPROXIMATE SOLUTIONS OF NON-LINEAR, NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    SOUDACK, AC
    BARKHAM, PGD
    INTERNATIONAL JOURNAL OF CONTROL, 1970, 12 (05) : 763 - &
  • [6] The intermittent behavior of a second-order non-linear non-autonomous oscillator
    Stavrinides, S. G.
    Deliolanis, N. C.
    Laopoulos, Th.
    Kyprianidis, I. M.
    Miliou, A. N.
    Anagnostopoulos, A. N.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1191 - 1199
  • [7] APPROXIMATE SOLUTION OF NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS WITH SATURATING NONLINEARITIES
    BARKHAM, PGD
    SOUDACK, AC
    INTERNATIONAL JOURNAL OF CONTROL, 1974, 19 (05) : 941 - 946
  • [8] Periodic Solutions of a Class of Non-autonomous Discontinuous Second-Order Differential Equations
    Clayton E. L. da Silva
    Alain Jacquemard
    Marco A. Teixeira
    Journal of Dynamical and Control Systems, 2020, 26 : 17 - 44
  • [9] Periodic Solutions of a Class of Non-autonomous Discontinuous Second-Order Differential Equations
    da Silva, Clayton E. L.
    Jacquemard, Alain
    Teixeira, Marco A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (01) : 17 - 44
  • [10] Internal crisis in a second-order non-linear non-autonomous electronic oscillator
    Stavrinides, S. G.
    Deliolanis, N. C.
    Miliou, A. N.
    Laopoulos, Th.
    Anagnostopouios, A. N.
    CHAOS SOLITONS & FRACTALS, 2008, 36 (04) : 1055 - 1061