Heteroclinic connections for fully non-linear non-autonomous second-order differential equations

被引:32
|
作者
Marcelli, Cristina [1 ]
Papalini, Francesca [1 ]
机构
[1] Tech Univ Marche, Dept Math Sci, I-60131 Ancona, Italy
关键词
boundary value problems; unbounded domains; heteroclinic solutions; upper and lower solutions; non-linear differential operators;
D O I
10.1016/j.jde.2007.05.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the solvability of the following strongly non-linear non-autonomous boundary value problem [GRAPHICS] with nu(-) < nu(+) given constants, where a(x) is a generic continuous positive function and f is a Caratheodory non-linear function. We show that the solvability of (P) is strictly connected to a sharp relation between the behaviors of f (t, x,.) as vertical bar x'vertical bar -> 0 and f (., x, x') as vertical bar t vertical bar -> +infinity. Such a relation is optimal for a wide class of problems, for which we prove that (P) is not solvable when it does not hold. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:160 / 183
页数:24
相关论文
共 50 条
  • [1] APPROXIMATE SOLUTIONS OF NON-LINEAR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    BARKHAM, PGD
    SOUDACK, AC
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1970, 11 (01) : 101 - &
  • [2] FURTHER RESULTS ON APPROXIMATE SOLUTIONS OF NON-LINEAR, NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    SOUDACK, AC
    BARKHAM, PGD
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1970, 12 (05) : 763 - &
  • [3] HETEROCLINICS FOR NON-AUTONOMOUS SECOND-ORDER DIFFERENTIAL EQUATIONS
    Gavioli, A.
    Sanchez, L.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (9-10) : 999 - 1018
  • [4] The intermittent behavior of a second-order non-linear non-autonomous oscillator
    Stavrinides, S. G.
    Deliolanis, N. C.
    Laopoulos, Th.
    Kyprianidis, I. M.
    Miliou, A. N.
    Anagnostopoulos, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1191 - 1199
  • [5] CERTAIN PROBLEMS CONCERNING OSCILLATION OF SOLUTIONS TO NON-LINEAR NON-AUTONOMOUS SECOND-ORDER EQUATIONS
    SHEVELO, VN
    SHTELIK, VG
    [J]. DOKLADY AKADEMII NAUK SSSR, 1963, 149 (02): : 276 - &
  • [6] Symplectic integrators for second-order linear non-autonomous equations
    Bader, Philipp
    Blanes, Sergio
    Casas, Fernando
    Kopylov, Nikita
    Ponsoda, Enrique
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 909 - 919
  • [7] Internal crisis in a second-order non-linear non-autonomous electronic oscillator
    Stavrinides, S. G.
    Deliolanis, N. C.
    Miliou, A. N.
    Laopoulos, Th.
    Anagnostopouios, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 36 (04) : 1055 - 1061
  • [8] Existence of heteroclinic solution for a class of non-autonomous second-order equation
    Alves, Claudianor O.
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (05): : 1195 - 1212
  • [9] Existence of heteroclinic solution for a class of non-autonomous second-order equation
    Claudianor O. Alves
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1195 - 1212
  • [10] Characterization of a non-autonomous second-order non-linear circuit for secure data transmission
    Miliou, A. N.
    Valaristos, A. P.
    Stavrinides, S. G.
    Kyritsi, K.
    Anagnostopoulos, A. N.
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1248 - 1255