A Deep Learning Model for Data-Driven Discovery of Functional Connectivity

被引:11
|
作者
Mahmood, Usman [1 ]
Fu, Zening [1 ]
Calhoun, Vince D. [1 ]
Plis, Sergey [1 ]
机构
[1] Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30302 USA
关键词
functional connectivity; deep learning; schizophrenia; BRAIN; CLASSIFICATION; NETWORKS; STATE;
D O I
10.3390/a14030075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Functional connectivity (FC) studies have demonstrated the overarching value of studying the brain and its disorders through the undirected weighted graph of functional magnetic resonance imaging (fMRI) correlation matrix. However, most of the work with the FC depends on the way the connectivity is computed, and it further depends on the manual post-hoc analysis of the FC matrices. In this work, we propose a deep learning architecture BrainGNN that learns the connectivity structure as part of learning to classify subjects. It simultaneously applies a graphical neural network to this learned graph and learns to select a sparse subset of brain regions important to the prediction task. We demonstrate that the model's state-of-the-art classification performance on a schizophrenia fMRI dataset and demonstrate how introspection leads to disorder relevant findings. The graphs that are learned by the model exhibit strong class discrimination and the sparse subset of relevant regions are consistent with the schizophrenia literature.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Data-driven Deep Reinforcement Learning for Automated Driving
    Prabu, Avinash
    Li, Lingxi
    Chen, Yaobin
    King, Brian
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 3790 - 3795
  • [22] Data-Driven Deep Learning for OTFS Detection br
    Gong, Yi
    Li, Qingyu
    Meng, Fanke
    Li, Xinru
    Xu, Zhan
    CHINA COMMUNICATIONS, 2023, 20 (01) : 88 - 101
  • [23] A Survey on Deep Learning for Data-Driven Soft Sensors
    Sun, Qingqiang
    Ge, Zhiqiang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 5853 - 5866
  • [24] Data-driven drug discovery and repositioning by machine learning methods
    Yamanishi, Yoshihiro
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [25] Machine learning for data-driven discovery in solid Earth geoscience
    Bergen, Karianne J.
    Johnson, Paul A.
    de Hoop, Maarten V.
    Beroza, Gregory C.
    SCIENCE, 2019, 363 (6433) : 1299 - +
  • [26] Data-driven drug discovery and medical treatment by machine learning
    Yamanishi, Yoshihiro
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] Evaluation of data-driven network analysis approaches for functional connectivity MRI
    Shella D. Keilholz
    Matthew Magnuson
    Garth Thompson
    Brain Structure and Function, 2010, 215 : 129 - 140
  • [28] Data-Driven Anomaly Detection for UAV Sensor Data Based on Deep Learning Prediction Model
    Wang, Benkuan
    Wang, Zeyang
    Liu, Liansheng
    Liu, Datong
    Peng, Xiyuan
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-PARIS), 2019, : 286 - 290
  • [29] Data-driven federated learning in drug discovery with knowledge distillation
    Thierry Hanser
    Ernst Ahlberg
    Alexander Amberg
    Lennart T. Anger
    Chris Barber
    Richard J. Brennan
    Alessandro Brigo
    Annie Delaunois
    Susanne Glowienke
    Nigel Greene
    Laura Johnston
    Daniel Kuhn
    Lara Kuhnke
    Jean-François Marchaland
    Wolfgang Muster
    Jeffrey Plante
    Friedrich Rippmann
    Yogesh Sabnis
    Friedemann Schmidt
    Ruud van Deursen
    Stéphane Werner
    Angela White
    Joerg Wichard
    Tomoya Yukawa
    Nature Machine Intelligence, 2025, 7 (3) : 423 - 436
  • [30] Designing for developability: Machine learning in data-driven drug discovery
    Karpiak, Joel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258