Data-driven Deep Reinforcement Learning for Automated Driving

被引:0
|
作者
Prabu, Avinash [1 ,2 ]
Li, Lingxi [1 ,2 ]
Chen, Yaobin [1 ,2 ]
King, Brian [1 ,2 ]
机构
[1] Indiana Univ Purdue Univ, TASI, 723 W Michigan St,SL-160, Indianapolis, IN 46202 USA
[2] Indiana Univ Purdue Univ, Dept Elect & Comp Engn, 723 W Michigan St,SL-160, Indianapolis, IN 46202 USA
关键词
D O I
10.1109/ITSC57777.2023.10422194
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Path-tracking control is an integral part of motion planning in autonomous vehicles, where a control system on the vehicle will provide acceleration and steering angle commands to ensure accurate tracking of its longitudinal and lateral movements in reference to a pre-defined trajectory. In this paper, a scenario and machine learning-based data-driven control approach is proposed for a path-tracking controller. Firstly, a deep reinforcement learning (DRL) model is developed to facilitate the control of the vehicle's longitudinal speed. A deep deterministic policy gradient algorithm is employed to train the reinforcement learning model. The main objective of this model is to maintain a safe distance from a lead vehicle (if present) or track a velocity set by the driver. Secondly, a lateral steering controller is developed to control the steering angle of the vehicle with the main goal of following a reference trajectory. Finally, the longitudinal and lateral control models are coupled to obtain a complete path-tracking controller at a wide range of vehicle speeds. The state-of-the-art model-based path-tracking controller is also built (using the model predictive control and Stanley control) to evaluate the performance of the proposed model. The results showed that the performance of the proposed data-driven DRL control model is effective compared with model-based control approaches (in terms of the velocity error, lateral yaw angle error, and lateral distance error).
引用
下载
收藏
页码:3790 / 3795
页数:6
相关论文
共 50 条
  • [1] Deep reinforcement learning for data-driven adaptive scanning in ptychography
    Marcel Schloz
    Johannes Müller
    Thomas C. Pekin
    Wouter Van den Broek
    Jacob Madsen
    Toma Susi
    Christoph T. Koch
    Scientific Reports, 13
  • [2] Deep reinforcement learning for data-driven adaptive scanning in ptychography
    Schloz, Marcel
    Mueller, Johannes
    Pekin, Thomas C.
    Van den Broek, Wouter
    Madsen, Jacob
    Susi, Toma
    Koch, Christoph T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [3] Data-driven Adaptive Network Management with Deep Reinforcement Learning
    Ivoghlian, Ameer
    Wang, Kevin I-Kai
    Salcic, Zoran
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 153 - 160
  • [4] Data-Driven Design of a Reference Governor Using Deep Reinforcement Learning
    Angelica Taylor, Maria
    Felipe Giraldo, Luis
    5TH IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2021), 2021, : 956 - 961
  • [5] Data-Driven Online Energy Scheduling of a Microgrid Based on Deep Reinforcement Learning
    Ji, Ying
    Wang, Jianhui
    Xu, Jiacan
    Li, Donglin
    ENERGIES, 2021, 14 (08)
  • [6] Data-driven district energy management with surrogate models and deep reinforcement learning
    Pinto, Giuseppe
    Deltetto, Davide
    Capozzoli, Alfonso
    Applied Energy, 2021, 304
  • [7] Data-Driven Hazard Avoidance Landing of Parafoil: A Deep Reinforcement Learning Approach
    Park, Junwoo
    Bang, Hyochoong
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2024, 21 (01): : 58 - 74
  • [8] Data-driven district energy management with surrogate models and deep reinforcement learning
    Pinto, Giuseppe
    Deltetto, Davide
    Capozzoli, Alfonso
    APPLIED ENERGY, 2021, 304
  • [9] Data-Driven Wind Farm Control via Multiplayer Deep Reinforcement Learning
    Dong, Hongyang
    Zhao, Xiaowei
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (03) : 1468 - 1475
  • [10] A Data-Driven Pandemic Simulator with Reinforcement Learning
    Zhang, Yuting
    Ma, Biyang
    Cao, Langcai
    Liu, Yanyu
    ELECTRONICS, 2024, 13 (13)