Conditional persistence of Gaussian random walks

被引:1
|
作者
Gao, Fuchang [1 ]
Liu, Zhenxia
Yang, Xiangfeng [2 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
[2] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
conditional persistence; random walk; integrated random walk;
D O I
10.1214/ECP.v19-3587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-n}(n >= 1) be a sequence of i.i.d. standard Gaussian random variables, let S-n =Sigma(n)(i=1) X-i be the Gaussian random walk, and let T-n = Sigma(n)(i=1) S-i be the integrated (or iterated) Gaussian random walk. In this paper we derive the following upper and lower bounds for the conditional persistence: P{max(1 <= k <= n) T-k <= 0 | T-n = 0, S-n = 0}less than or similar to n(-1/2), P{max(1 < k < 2n) T-k <= 0 | T-2n = 0, S-2n = 0}greater than or similar to n(-1/2)/logn, for n --> infinity, which partially proves a conjecture by Caravenna and Deuschel [3].
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条