Conditional persistence of Gaussian random walks

被引:1
|
作者
Gao, Fuchang [1 ]
Liu, Zhenxia
Yang, Xiangfeng [2 ]
机构
[1] Univ Idaho, Dept Math, Moscow, ID 83844 USA
[2] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
关键词
conditional persistence; random walk; integrated random walk;
D O I
10.1214/ECP.v19-3587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {X-n}(n >= 1) be a sequence of i.i.d. standard Gaussian random variables, let S-n =Sigma(n)(i=1) X-i be the Gaussian random walk, and let T-n = Sigma(n)(i=1) S-i be the integrated (or iterated) Gaussian random walk. In this paper we derive the following upper and lower bounds for the conditional persistence: P{max(1 <= k <= n) T-k <= 0 | T-n = 0, S-n = 0}less than or similar to n(-1/2), P{max(1 < k < 2n) T-k <= 0 | T-2n = 0, S-2n = 0}greater than or similar to n(-1/2)/logn, for n --> infinity, which partially proves a conjecture by Caravenna and Deuschel [3].
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [1] Average persistence of random walks
    Rieger, H
    Iglói, F
    [J]. EUROPHYSICS LETTERS, 1999, 45 (06): : 673 - 679
  • [2] On dynamical Gaussian random walks
    Khoshnevisan, D
    Levin, DA
    Méndez-Hernández, PJ
    [J]. ANNALS OF PROBABILITY, 2005, 33 (04): : 1452 - 1478
  • [3] Amnestically induced persistence in random walks
    Cressoni, J. C.
    Alves da Silva, Marco Antonio
    Viswanathan, G. M.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (07)
  • [4] Gaussian Networks Generated by Random Walks
    Marco Alberto Javarone
    [J]. Journal of Statistical Physics, 2015, 159 : 108 - 119
  • [5] Diophantine Gaussian excursions and random walks
    Lachieze-Rey, Raphael
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [6] Branching random walks and Gaussian fields
    Zeitouni, Ofer
    [J]. PROBABILITY AND STATISTICAL PHYSICS IN ST. PETERSBURG, 2016, 91 : 437 - 471
  • [7] Gaussian Networks Generated by Random Walks
    Javarone, Marco Alberto
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2015, 159 (01) : 108 - 119
  • [8] Gaussian fluctuations for random walks in random mixing environments
    Comets, F
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2005, 148 (1) : 87 - 113
  • [9] Gaussian fluctuations for random walks in random mixing environments
    Francis Comets
    Ofer Zeitouni
    [J]. Israel Journal of Mathematics, 2005, 148 : 87 - 113
  • [10] Conditional limit theorems for ordered random walks
    Denisov, Denis
    Wachtel, Vitali
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 292 - 322