Amnestically induced persistence in random walks

被引:61
|
作者
Cressoni, J. C. [1 ]
Alves da Silva, Marco Antonio
Viswanathan, G. M.
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072970 Maceio, Alagoas, Brazil
[2] Univ Sao Paulo, Dept Quim & Fis, FCFRP, BR-14040903 Sao Paulo, Brazil
关键词
D O I
10.1103/PhysRevLett.98.070603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study how the Hurst exponent alpha depends on the fraction f of the total time t remembered by non-Markovian random walkers that recall only the distant past. We find that otherwise nonpersistent random walkers switch to persistent behavior when inflicted with significant memory loss. Such memory losses induce the probability density function of the walker's position to undergo a transition from Gaussian to non-Gaussian. We interpret these findings of persistence in terms of a breakdown of self-regulation mechanisms and discuss their possible relevance to some of the burdensome behavioral and psychological symptoms of Alzheimer's disease and other dementias.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Anomalous diffusion in non-Markovian walks having amnestically induced persistence
    Ferreira, A. S.
    Cressoni, J. C.
    Viswanathan, G. M.
    Alves da Silva, Marco Antonio
    [J]. PHYSICAL REVIEW E, 2010, 81 (01):
  • [2] Sudden onset of log-periodicity and superdiffusion in non-Markovian random walks with amnestically induced persistence: exact results
    Felisberto, M. L.
    Passos, F. S.
    Ferreira, A. S.
    da Silva, M. A. A.
    Cressoni, J. C.
    Viswanathan, G. M.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 72 (03): : 427 - 433
  • [3] Sudden onset of log-periodicity and superdiffusion in non-Markovian random walks with amnestically induced persistence: exact results
    M. L. Felisberto
    F. S. Passos
    A. S. Ferreira
    M. A.A. da Silva
    J. C. Cressoni
    G. M. Viswanathan
    [J]. The European Physical Journal B, 2009, 72 : 427 - 433
  • [4] Spontaneous symmetry breaking in amnestically induced persistence
    Alves da Silva, Marco Antonio
    Viswanathan, G. M.
    Ferreira, A. S.
    Cressoni, J. C.
    [J]. PHYSICAL REVIEW E, 2008, 77 (04)
  • [5] Average persistence of random walks
    Rieger, H
    Iglói, F
    [J]. EUROPHYSICS LETTERS, 1999, 45 (06): : 673 - 679
  • [6] Conditional persistence of Gaussian random walks
    Gao, Fuchang
    Liu, Zhenxia
    Yang, Xiangfeng
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 9
  • [7] Finite-size effect in persistence in random walks
    Chakraborty, D.
    Bhattacharjee, J. K.
    [J]. PHYSICAL REVIEW E, 2007, 75 (01):
  • [8] Scaling analysis of random walks with persistence lengths: Application to self-avoiding walks
    Granzotti, C. R. F.
    Martinez, A. S.
    da Silva, M. A. A.
    [J]. PHYSICAL REVIEW E, 2016, 93 (05)
  • [9] Quantum walks induced by Dirichlet random walks on infinite trees
    Higuchi, Yusuke
    Segawa, Etsuo
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (07)