Identification of Translationese: A Machine Learning Approach

被引:0
|
作者
Ilisei, Iustina [1 ]
Inkpen, Diana [2 ]
Pastor, Gloria Corpas [3 ]
Mitkov, Ruslan [1 ]
机构
[1] Wolverhampton Univ, Res Inst Informat & Language Proc, Wolverhampton WV1 1DJ, W Midlands, England
[2] Univ Ottawa, Sch Informat Technol & Engn, Ottawa, ON K1N 6N5, Canada
[3] Univ Malaga, Dept Translat & Interpreting, E-29071 Malaga, Spain
来源
COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING | 2010年 / 6008卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a machine learning approach to the study of translationese. The goal is to train a computer system to distinguish between translated and non-translated text, in order to determine the characteristic features that influence the classifiers. Several algorithms reach up to 97.62% success rate on a technical dataset. Moreover, the SVM classifier consistently reports a statistically significant improved accuracy when the learning system benefits from the addition of simplification features to the basic translational classifier system. Therefore, these findings may be considered an argument for the existence of the Simplification Universal.
引用
收藏
页码:503 / +
页数:3
相关论文
共 50 条
  • [41] Machine Learning Based Approach for Person Identification in Group Photos
    Sakhapara, Avani
    Pawade, Dipti
    Dedhia, Saumil
    Bhanushali, Twinkle
    Doshi, Vinit
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [42] Iris Flower Species Identification Using Machine Learning Approach
    Pinto, Joylin Priya
    Kelur, Sownya
    Shetty, Jyothi
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [43] Identification of VoIP encrypted traffic using a machine learning approach
    Alshammari, Riyad
    Zincir-Heywood, A. Nur
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2015, 27 (01) : 77 - 92
  • [44] Machine Learning Approach for the Identification of Diabetes Retinopathy and its Stages
    Nijalingappa, Pradeep
    Sandeep, B.
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), 2015, : 653 - 658
  • [45] CRISPRidentify: identification of CRISPR arrays using machine learning approach
    Mitrofanov, Alexander
    Alkhnbashi, Omer S.
    Shmakov, Sergey A.
    Makarova, Kira S.
    Koonin, Eugene, V
    Backofen, Rolf
    NUCLEIC ACIDS RESEARCH, 2021, 49 (04)
  • [46] Machine Learning-Based Approach for the Gambling Problem Identification
    Kozak, Jan
    Probierz, Barbara
    Juszczuk, Przemyslaw
    Dziczkowski, Grzegorz
    Jach, Tomasz
    Stefanski, Piotr
    Glowania, Szymon
    Hrabia, Anita
    Wolek, Gabriel
    Sznapka, Wojciech
    Swierk, Lukasz
    Joniec, Natalia
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2025,
  • [47] How Human is Machine Translationese? Comparing Human and Machine Translations of Text and Speech
    Bizzoni, Yuri
    Juzek, Tom S.
    Espana-Bonet, Cristina
    Chowdhury, Koel Dutta
    van Genabith, Josef
    Teich, Elke
    17TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE TRANSLATION (IWSLT 2020), 2020, : 280 - 290
  • [48] A machine text-inspired machine learning approach for identification of transmembrane helix boundaries
    Cheng, BYM
    Carbonell, JG
    Klein-Seetharaman, J
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, 3488 : 29 - 37
  • [49] Improving Statistical Machine Translation by Adapting Translation Models to Translationese
    Lembersky, Gennadi
    Ordan, Noam
    Wintner, Shuly
    COMPUTATIONAL LINGUISTICS, 2013, 39 (04) : 999 - 1024
  • [50] Machine Learning Approach for Identification of Objective Function in Production Scheduling Problems
    Matsuoka, Yoki
    Nishi, Tatsushi
    Tierney, Kevin
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2019, : 679 - 684