Identification of Translationese: A Machine Learning Approach

被引:0
|
作者
Ilisei, Iustina [1 ]
Inkpen, Diana [2 ]
Pastor, Gloria Corpas [3 ]
Mitkov, Ruslan [1 ]
机构
[1] Wolverhampton Univ, Res Inst Informat & Language Proc, Wolverhampton WV1 1DJ, W Midlands, England
[2] Univ Ottawa, Sch Informat Technol & Engn, Ottawa, ON K1N 6N5, Canada
[3] Univ Malaga, Dept Translat & Interpreting, E-29071 Malaga, Spain
来源
COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING | 2010年 / 6008卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a machine learning approach to the study of translationese. The goal is to train a computer system to distinguish between translated and non-translated text, in order to determine the characteristic features that influence the classifiers. Several algorithms reach up to 97.62% success rate on a technical dataset. Moreover, the SVM classifier consistently reports a statistically significant improved accuracy when the learning system benefits from the addition of simplification features to the basic translational classifier system. Therefore, these findings may be considered an argument for the existence of the Simplification Universal.
引用
收藏
页码:503 / +
页数:3
相关论文
共 50 条
  • [31] TARGET ASPECT IDENTIFICATION IN SAR IMAGE: A MACHINE LEARNING APPROACH
    Pei, Jifang
    Huang, Yulin
    Huo, Weibo
    Zhang, Yin
    Yang, Jianyu
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2310 - 2313
  • [32] A Machine Learning Approach for Dynamic Spectrum Access Radio Identification
    La Pan, Matthew J.
    Clancy, T. Charles
    McGwier, Robert W.
    2014 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2014), 2014, : 1041 - 1046
  • [33] A MACHINE LEARNING APPROACH FOR THE IDENTIFICATION OF RISK FACTORS FOR CARDIOVASCULAR DISEASE
    Coelho, J. R.
    Gaspar, I. M.
    Silva, A. M.
    Freitas, A. T.
    CARDIOLOGY, 2013, 126 : 272 - 272
  • [34] Identification and Prediction of Chronic Diseases Using Machine Learning Approach
    Alanazi, Rayan
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [35] Identification of human errors and influencing factors: A machine learning approach
    Morais, Caroline
    Yung, Ka Lai
    Johnson, Karl
    Moura, Raphael
    Beer, Michael
    Patelli, Edoardo
    SAFETY SCIENCE, 2022, 146
  • [36] Supervised Machine Learning Approach for Pork Meat Freshness Identification
    Lumogdang, Christell Faith D.
    Wata, Marianne G.
    Loyola, Stephone Jone S.
    Angelia, Randy E.
    Angelia, Hanna Leah P.
    PROCEEDINGS OF 2019 6TH INTERNATIONAL CONFERENCE BIOINFORMATICS RESEARCH AND APPLICATIONS (ICBRA 2019), 2019, : 1 - 6
  • [37] Object Identification in Land Parcels Using a Machine Learning Approach
    Gundermann, Niels
    Lowe, Welf
    Fransson, Johan E. S.
    Olofsson, Erika
    Wehrenpfennig, Andreas
    REMOTE SENSING, 2024, 16 (07)
  • [38] Machine Learning Approach for Identification of Microstructure-Process Linkages
    Acar, Pinar
    AIAA JOURNAL, 2019, 57 (08) : 3608 - 3614
  • [39] Identification of Toxoplasma gondii adhesins through a machine learning approach
    Valencia-Hernandez, Juan D.
    Acosta-Davila, John Alejandro
    Arenas-Garcia, Juan Camilo
    Garcia-Lopez, Laura Lorena
    Molina-Lara, Diego Alejandro
    Arenas-Soto, Ailan Farid
    Eraso-Ortiz, Diego A.
    Gomez-Marin, Jorge E.
    EXPERIMENTAL PARASITOLOGY, 2022, 238
  • [40] Machine learning approach of automatic identification and counting of blood cells
    Alam, Mohammad Mahmudul
    Islam, Mohammad Tariqul
    HEALTHCARE TECHNOLOGY LETTERS, 2019, 6 (04) : 103 - 108