Identification of Translationese: A Machine Learning Approach

被引:0
|
作者
Ilisei, Iustina [1 ]
Inkpen, Diana [2 ]
Pastor, Gloria Corpas [3 ]
Mitkov, Ruslan [1 ]
机构
[1] Wolverhampton Univ, Res Inst Informat & Language Proc, Wolverhampton WV1 1DJ, W Midlands, England
[2] Univ Ottawa, Sch Informat Technol & Engn, Ottawa, ON K1N 6N5, Canada
[3] Univ Malaga, Dept Translat & Interpreting, E-29071 Malaga, Spain
来源
COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING | 2010年 / 6008卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a machine learning approach to the study of translationese. The goal is to train a computer system to distinguish between translated and non-translated text, in order to determine the characteristic features that influence the classifiers. Several algorithms reach up to 97.62% success rate on a technical dataset. Moreover, the SVM classifier consistently reports a statistically significant improved accuracy when the learning system benefits from the addition of simplification features to the basic translational classifier system. Therefore, these findings may be considered an argument for the existence of the Simplification Universal.
引用
收藏
页码:503 / +
页数:3
相关论文
共 50 条
  • [1] A machine learning approach to the identification of appositives
    Freitas, Maria Claudia
    Duarte, Julio C.
    Santos, Cicero N.
    Milidiu, Ruy L.
    Renteria, Raul P.
    Quental, Violeta
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA-SBIA 2006, PROCEEDINGS, 2006, 4140 : 309 - 318
  • [2] Translating Translationese: A Two-Step Approach to Unsupervised Machine Translation
    Pourdamghani, Nima
    Aldarrab, Nada
    Ghazvininejad, Marjan
    Knight, Kevin
    May, Jonathan
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3057 - 3062
  • [3] A machine learning approach for asperities’ location identification
    Konstantinos Arvanitakis
    Ioannis Karydis
    Katia L. Kermanidis
    Markos Avlonitis
    Evolving Systems, 2019, 10 : 41 - 50
  • [4] A Machine Learning Approach to Portuguese Clause Identification
    Fernandes, Eraldo R.
    dos Santos, Cicero N.
    Milidiu, Ruy L.
    COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROCEEDINGS, 2010, 6001 : 55 - +
  • [5] Sarcasm Identification on Twitter: A Machine Learning Approach
    Onan, Aytug
    ARTIFICIAL INTELLIGENCE TRENDS IN INTELLIGENT SYSTEMS, CSOC2017, VOL 1, 2017, 573 : 374 - 383
  • [6] A machine learning approach for asperities' location identification
    Arvanitakis, Konstantinos
    Karydis, Ioannis
    Kermanidis, Katia L.
    Avlonitis, Markos
    EVOLVING SYSTEMS, 2019, 10 (01) : 41 - 50
  • [7] A Machine Learning Approach for Gas Kick Identification
    Obi, C. E.
    Falola, Y.
    Manikonda, K.
    Hasan, A. R.
    Hassan, I. G.
    Rahman, M. A.
    SPE DRILLING & COMPLETION, 2023, 38 (04) : 663 - 681
  • [8] Machine learning approach to RF transmitter identification
    Youssef K.
    Bouchard L.
    Haigh K.
    Silovsky J.
    Thapa B.
    Valk C.V.
    Bouchard, Louis (louis.bouchard@gmail.com), 2018, Institute of Electrical and Electronics Engineers Inc. (02): : 197 - 205
  • [9] A Machine Learning Approach to Identification of Unhealthy Drinking
    Bonnell, Levi N.
    Littenberg, Benjamin
    Wshah, Safwan R.
    Rose, Gail L.
    JOURNAL OF THE AMERICAN BOARD OF FAMILY MEDICINE, 2020, 33 (03) : 397 - 406
  • [10] A Machine Learning Approach for Gas Kick Identification
    Obi C.E.
    Falola Y.
    Manikonda K.
    Hasan A.R.
    Hassan I.G.
    Rahman M.A.
    SPE Drilling and Completion, 2023, 38 (04): : 663 - 681