PERTURBED NONLINEAR ELLIPTIC NEUMANN PROBLEMS INVOLVING ANISOTROPIC SOBOLEV SPACES WITH VARIABLE EXPONENTS

被引:1
|
作者
Ahmed, A. [1 ]
Vall, M. S. B. Elemine [2 ]
机构
[1] Univ Sidi Mohamed Ibn Abdellah, Fac Sci Dhar Mahraz, Dept Math, Lab LAMA, BP 1796, Atlas Fez, Morocco
[2] Univ Nouakchott, Profess Univ Inst Dept Math, Nouakchott, Mauritania
来源
MATEMATICHE | 2022年 / 77卷 / 02期
关键词
Ricceri's variational principle; Kirchhoff-type problem; Non-homogeneous operators; Elliptic problems; anisotropic variable exponent Lebesgue-Sobolev spaces; ELECTRORHEOLOGICAL FLUIDS; WEAK SOLUTIONS; EXISTENCE; EQUATIONS; FUNCTIONALS; EIGENVALUE; VIBRATION;
D O I
10.4418/2022.77.2.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the existence of infinitely many weak solutions of the following perturbed Kirchhoff-type non-homogeneous Neumann problem {-Sigma(N)(i=1) M-i (integral(Omega) 1/p(i)(x) vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x)) dx) partial derivative/partial derivative x(i) (vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x) 2) partial derivative u/partial derivative x(i)) + M-0 (integral(Omega) 1/p(0)(x) vertical bar u vertical bar(p0(x)-2) u = f(x,u) + g(x,u) in Omega, Sigma(N)(i=1) vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x)-2) partial derivative u/partial derivative x(i) v(i)=0 on partial derivative Omega, by applying technical approach based on critical points theorem due to B. Ricceri in a reflexive anisotropic Sobolev spaces. We use some suitable assumptions on the right had side but without using log-H older continu-ous condition.
引用
收藏
页码:465 / 486
页数:22
相关论文
共 50 条
  • [31] WEAK SOLVABILITY OF NONLINEAR ELLIPTIC EQUATIONS INVOLVING VARIABLE EXPONENTS
    Aberqi, Ahmed
    Bennouna, Jaouad
    Benslimane, Omar
    Ragusa, Maria Alessandra
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (06): : 1142 - 1157
  • [32] NONLINEAR ANISOTROPIC ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS AND DEGENERATE COERCIVITY
    Ayadi, Hocine
    Mokhtari, Fares
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [33] A Multiplicity Result for an Elliptic Anisotropic Differential Inclusion Involving Variable Exponents
    Nicuşor Costea
    Gheorghe Moroşanu
    Set-Valued and Variational Analysis, 2013, 21 : 311 - 332
  • [34] Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity
    Mokhtar, Naceri
    Mokhtari, Fares
    APPLICABLE ANALYSIS, 2021, 100 (11) : 2347 - 2367
  • [35] WEAK SOLUTIONS FOR ANISOTROPIC NONLINEAR ELLIPTIC EQUATIONS WITH VARIABLE EXPONENTS
    Kone, Blaise
    Ouaro, Stanislas
    Traore, Sado
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2009,
  • [36] A Multiplicity Result for an Elliptic Anisotropic Differential Inclusion Involving Variable Exponents
    Costea, Nicusor
    Morosanu, Gheorghe
    SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (02) : 311 - 332
  • [37] Strongly anisotropic elliptic problems of infinite order with variable exponents
    Abdou, M. H.
    Benkirane, A.
    Chrif, M.
    El Manouni, S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (10) : 1403 - 1417
  • [38] SOLUTIONS OF ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS WITH NEUMANN BOUNDARY-CONDITIONS
    COMTE, M
    KNAAP, MC
    MANUSCRIPTA MATHEMATICA, 1990, 69 (01) : 43 - 70
  • [39] On a Neumann problem involving two critical Sobolev exponents
    Dario Pierotti
    Susanna Terracini
    Calculus of Variations and Partial Differential Equations, 1997, 5 : 271 - 291
  • [40] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +