PERTURBED NONLINEAR ELLIPTIC NEUMANN PROBLEMS INVOLVING ANISOTROPIC SOBOLEV SPACES WITH VARIABLE EXPONENTS

被引:1
|
作者
Ahmed, A. [1 ]
Vall, M. S. B. Elemine [2 ]
机构
[1] Univ Sidi Mohamed Ibn Abdellah, Fac Sci Dhar Mahraz, Dept Math, Lab LAMA, BP 1796, Atlas Fez, Morocco
[2] Univ Nouakchott, Profess Univ Inst Dept Math, Nouakchott, Mauritania
来源
MATEMATICHE | 2022年 / 77卷 / 02期
关键词
Ricceri's variational principle; Kirchhoff-type problem; Non-homogeneous operators; Elliptic problems; anisotropic variable exponent Lebesgue-Sobolev spaces; ELECTRORHEOLOGICAL FLUIDS; WEAK SOLUTIONS; EXISTENCE; EQUATIONS; FUNCTIONALS; EIGENVALUE; VIBRATION;
D O I
10.4418/2022.77.2.12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the existence of infinitely many weak solutions of the following perturbed Kirchhoff-type non-homogeneous Neumann problem {-Sigma(N)(i=1) M-i (integral(Omega) 1/p(i)(x) vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x)) dx) partial derivative/partial derivative x(i) (vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x) 2) partial derivative u/partial derivative x(i)) + M-0 (integral(Omega) 1/p(0)(x) vertical bar u vertical bar(p0(x)-2) u = f(x,u) + g(x,u) in Omega, Sigma(N)(i=1) vertical bar partial derivative u/partial derivative x(i)vertical bar(pi(x)-2) partial derivative u/partial derivative x(i) v(i)=0 on partial derivative Omega, by applying technical approach based on critical points theorem due to B. Ricceri in a reflexive anisotropic Sobolev spaces. We use some suitable assumptions on the right had side but without using log-H older continu-ous condition.
引用
收藏
页码:465 / 486
页数:22
相关论文
共 50 条
  • [21] ON AN EIGENVALUE PROBLEM FOR AN ANISOTROPIC ELLIPTIC EQUATION INVOLVING VARIABLE EXPONENTS
    Mihailescu, Mihai
    Morosanu, Gheorghe
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 517 - 527
  • [22] Nonlinear Parabolic Problems in Anisotropic Sobolev Spaces
    El Ansari, M.
    Akdim, Y.
    Rhali, S. L.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (02): : 109 - 143
  • [23] Nonlinear boundary value problems of a class of elliptic equations involving critical variable exponents
    Shan, Yingying
    Fu, Yongqiang
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [24] NONHOMOGENEOUS ELLIPTIC PROBLEMS OF KIRCHHOFF TYPE INVOLVING CRITICAL SOBOLEV EXPONENTS
    Benmansour, Safia
    Bouchekif, Mohammed
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [25] Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents
    Silva, EAB
    Xavier, MS
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (02): : 341 - 358
  • [26] Nonlinear boundary value problems of a class of elliptic equations involving critical variable exponents
    Yingying Shan
    Yongqiang Fu
    Boundary Value Problems, 2019
  • [27] Multiplicity results for some elliptic problems with nonlinear boundary conditions involving variable exponents
    Mihailescu, Mihai
    Varga, Csaba
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) : 3464 - 3471
  • [28] On a nonlinear elasticity problem with friction and Sobolev spaces with variable exponents
    Boukrouche, Mahdi
    Merouani, Boubakeur
    Zoubai, Fayrouz
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2022, 2022 (01):
  • [29] A perturbed nonlinear elliptic PDE with two Hardy-Sobolev critical exponents
    Zhong, X.
    Zou, W.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (04)
  • [30] Existence Results for Nonlinear Elliptic Equations with Leray-Lions Operators in Sobolev Spaces with Variable Exponents
    Al-Shomrani, M. Mosa
    Salah, M. Ben Mohamed
    Ghanmi, A.
    Kefi, K.
    MATHEMATICAL NOTES, 2021, 110 (5-6) : 830 - 841