Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells

被引:47
|
作者
Bi, ZH
Cheng, MJ [1 ]
Dong, YL
Wu, HJ
She, YC
Yi, BL
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
IT-SOFC; La0.6Sr0.4CoO3; composite cathodes; lanthanum gallate;
D O I
10.1016/j.ssi.2004.10.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical properties of porous composite cathodes of La0.6Sr0.4CoO3 (LSC) and La0.45Ce0.55O2 (LDC) in anode supported lanthanum-doped ceria (LDC)/lanthanum gallate (LSGM) bilayer electrolyte single cells have been investigated. The composite cathodes with different LDC and LSC contents were in contact with the LSGM layer in the single cells. Comparing with the pure LSC cathode, the interfacial resistance decreased upon the addition of LDC and the optimum content of LDC was 50 wt.%. The variation in ohmic resistance suggests that the composite cathode can suppress Co diffusion from the cathode into the LSGM electrolyte during the firing of the composite cathode onto the electrolyte. The composite cathode with 50 wt.% LDC showed an ohmic resistance near to the calculated resistance of an electrolyte film. For the pure LSC cathode, the optimum firing temperature was about 1150 degreesC, at which both the electrolyte resistance and interface resistance were the smallest. The cathodic interfacial resistance was effectively reduced for the composite cathodes, especially for the cathode with 50 wt.% LDC, which might be due to the suppressing of sintering and the growth of LSC particles from LDC particles during the firing onto the electrolyte. The complicated effects of the composite cathode on the interfacial resistance and ohmic resistance resulted in the best single cell performance at 650 degreesC with a 50 wt.% LDC composite cathode, and the best cell performance above 700 degreesC on the single cell with pure LSC cathode. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:655 / 661
页数:7
相关论文
共 50 条
  • [31] Microstructure and electrical conductivity of La0.9Sr0.1 Ga0.8Mg0.2O2.85-Ce0.8Gd0.2O1.9 composite electrolytes for SOFCs
    Xu, Shun
    Lin, Xuping
    Ge, Ben
    Ai, Desheng
    Ma, Jingtao
    Peng, Zhijian
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2019, 16 (01) : 108 - 118
  • [32] A comparison study of chromium deposition and poisoning on La0.8Sr0.2Ga0.8Mg0.2O3-δ and Gd0.1Ce0.9O2-δ electrolytes of solid oxide fuel cells
    Zhao, Ling
    Cui, Yuexiao
    Gui, Liangqi
    Li, Geng
    He, Beibei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 376 - 381
  • [33] Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere
    Yamaji, K
    Horita, T
    Ishikawa, M
    Sakai, N
    Yokokawa, H
    SOLID STATE IONICS, 1999, 121 (1-4) : 217 - 224
  • [34] La2NiO4+δ potential cathode material on La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for intermediate temperature solid oxide fuel cell
    Jose Escudero, Maria
    Fuerte, Araceli
    Daza, Loreto
    JOURNAL OF POWER SOURCES, 2011, 196 (17) : 7245 - 7250
  • [35] Electrochemical performance and redox stability of Sr0.8La0.2TiO3-Ce0.9Gd0.1O2-δ composite anodes for solid oxide fuel cells
    Rath, Manasa K.
    Koo, Ji-Hoon
    Lee, Ki-Tae
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2016, 17 (08): : 837 - 839
  • [36] Electrochemical reduction of NO by solid electrolyte cells with La0.8Sr0.2MnO3-Ce0.8Sm0.2O1.9 composite cathodes
    Li, Wenjie
    Yu, Han
    Yu, Hongbing
    Yang, Nan
    Zhang, Shuyuan
    CHEMICAL ENGINEERING JOURNAL, 2019, 378
  • [38] La0.6Sr0.4Co0.2Fe0.8O3 cathodes incorporated with Sm0.2Ce0.8O2 by three different methods for solid oxide fuel cells
    Shen, Fengyu
    Lu, Kathy
    JOURNAL OF POWER SOURCES, 2015, 296 : 318 - 326
  • [39] Numerical simulation of La0.6Sr0.4Co0.2Fe0.8O3Gd0.1Ce0.9O1.95 composite cathodes with micro pillars
    He, An
    Shimura, Takaaki
    Gong, Jiaming
    Shikazono, Naoki
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (13) : 6871 - 6885
  • [40] Honeycomb-type solid oxide fuel cells using La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte
    Zhong, Hao
    Matsumoto, Hiroshige
    Ishihara, Tatsumi
    Toriyama, Akira
    CHEMISTRY LETTERS, 2007, 36 (07) : 846 - 847