Passenger Flow Prediction of Scenic Spots in Jilin Province Based on Convolutional Neural Network and Improved Quantile Regression Long Short-Term Memory Network

被引:2
|
作者
Qin, Xiwen [1 ]
Yin, Dongmei [1 ]
Dong, Xiaogang [1 ]
Chen, Dongxue [1 ]
Zhang, Shuang [1 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
scenic passenger flow; quantile regression long short-term memory network; sparse Laplacian; grid constraints; convolutional neural network; interval prediction; TOURISM; MODEL;
D O I
10.3390/ijgi11100509
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Passenger flow is an important benchmark for measuring tourism benefits, and accurate tourism passenger flow prediction is of great significance to the government and related tourism enterprises and can promote the sustainable development of China's tourism industry. For daily passenger flow time series data, a passenger flow forecasting method based on convolutional neural network (CNN) and improved quantile regression long short-term memory network (QRLSTM), denoted as CNN-IQRLSTM, is proposed with reconstructed correlation features and in the form of sliding windows as inputs. First, four discrete variables such as whether the day is a weekend and holiday are created by time; then, a sliding window of width 42 is used to pass the passenger flow data into the network sequentially; finally, the loss function of the sparse Laplacian improved QRLSTM is introduced for passenger flow prediction, and the point prediction and interval prediction results under different quartiles are obtained. The application of quantile regression captures the overall picture of the data, enhances the robustness, fit, predictive power and nonlinear processing capability of neural networks, and fills the gap between quantile regression and neural network methods in the field of passenger flow prediction. CNN can effectively handle complex input data, and the improved nonlinear QR model can provide passenger flow quantile prediction information. The method is applied to the tourism traffic prediction of four 5A scenic spots in Jilin Province, and the effectiveness of the method is verified. The results show that the method proposed in this paper fits best in point prediction and has higher prediction accuracy. The MAPE of the Changbai Mountain dataset was 0.07, the MAPE of the puppet palace museum dataset was 0.05, the fit of the Sculpture Park dataset reached 93%, and the fit of the net moon lake dataset was as high as 99%. Meanwhile, the interval prediction results show that the method has a larger interval coverage as well as a smaller interval average width, which improves the prediction efficiency. In 95% of the interval predictions, the interval coverage of Changbai Mountain data is 99% and the interval average width is 0.49. It is a good reference value for the management of different scenic spots.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Long short-term memory neural network for glucose prediction
    Carrillo-Moreno, Jaime
    Perez-Gandia, Carmen
    Sendra-Arranz, Rafael
    Garcia-Saez, Gema
    Hernando, M. Elena
    Gutierrez, Alvaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (09): : 4191 - 4203
  • [22] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [23] Prediction of reference crop evapotranspiration based on improved convolutional neural network (CNN) and long short-term memory network (LSTM) models in Northeast China
    Li, Menghang
    Zhou, Qingyun
    Han, Xin
    Lv, Pingan
    JOURNAL OF HYDROLOGY, 2024, 645
  • [24] Reactive Load Prediction Based on a Long Short-Term Memory Neural Network
    Zhang, Xu
    Wang, Yixian
    Zheng, Yuchuan
    Ding, Ruiting
    Chen, Yunlong
    Wang, Yi
    Cheng, Xueting
    Yue, Shuai
    IEEE ACCESS, 2020, 8 : 90969 - 90977
  • [25] Short-term traffic flow prediction based on improved wavelet neural network
    Chen, Qiuxia
    Song, Ying
    Zhao, Jianfeng
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8181 - 8190
  • [26] Monthly climate prediction using deep convolutional neural network and long short-term memory
    Guo, Qingchun
    He, Zhenfang
    Wang, Zhaosheng
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Short-term traffic flow prediction based on improved wavelet neural network
    Qiuxia Chen
    Ying Song
    Jianfeng Zhao
    Neural Computing and Applications, 2021, 33 : 8181 - 8190
  • [28] Water level prediction of Liuxihe Reservoir based on improved long short-term memory neural network
    Li, Youming
    Qu, Jia
    Zhang, Haosen
    Long, Yan
    Li, Shu
    WATER SUPPLY, 2023, 23 (11) : 4563 - 4582
  • [29] Prediction model of dissolved oxygen in aquaculture based on improved long short-term memory neural network
    Cao S.
    Zhou L.
    Zhang Z.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (14): : 235 - 242
  • [30] Remaining useful lifetime prediction methods of proton exchange membrane fuel cell based on convolutional neural network-long short-term memory and convolutional neural network-bidirectional long short-term memory
    Peng, Yulin
    Chen, Tao
    Xiao, Fei
    Zhang, Shaojie
    FUEL CELLS, 2023, 23 (01) : 75 - 87