Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling

被引:119
|
作者
An, Zhiguo [1 ]
Chen, Xing [1 ]
Zhao, Lin [1 ]
Gao, Zhengyuan [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, 66 Xue Fu Rd, Chongqing 400074, Peoples R China
关键词
Lithium-ion battery; Composite phase change material; Thermal management; Liquid cooling; SYSTEM; PERFORMANCE; GRAPHITE; OPTIMIZATION; PACK;
D O I
10.1016/j.applthermaleng.2019.114345
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel thermal management system was proposed based on paraffin (RT44HC)/expanded graphite (EG) composite phase change material (CPCM) coupled with liquid cooling to maintain the temperature rise and difference within a desirable range of lithium-ion batteries at a discharge rate of 3C. A numerical research was conducted by computational fluid dynamics (CFD) to investigate the effects of the battery's thermal characteristics at an ambient temperature of 40 degrees C at various flow velocities, channel arrangement and CPCM with different mass fraction of EG. Furthermore, the thermal behavior of the integrated thermal management system (ITMS) in a charge-discharge cycles was analyzed. The results indicate that the heat dissipation of the battery pack is enhanced with an increase of the flow velocity, but when the flow velocity is greater than 0.08 m/s, the increase of the flow velocity imposes little effect on further improving heat dissipation performance of the ITMS. The channel layout of Type I indicates the optimal cooling performance at various flow velocities. Compared with the pure paraffin phase change material (PCM), the maximum temperature is reduced by 2.1 degrees C, and the temperature difference is only 2 degrees C in the ITMS, with an EG of 6 wt%. On charge-discharge duties, the maximum temperature and the initial temperature are constant at the lower liquid flow velocity of 0.04 m/s, and the ITMS with an EG of 6 wt% meets the requirements for heat dissipation.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Experimental investigation on hydrated salt phase change material for lithium-ion battery thermal management and thermal runaway mitigation
    Zhi, Maoyong
    Fan, Rong
    Zheng, Lingling
    Yue, Shan
    Pan, Zhiheng
    Sun, Qiang
    Liu, Quanyi
    ENERGY, 2024, 307
  • [42] Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery
    Zhou, Zhizuan
    Wang, Dong
    Peng, Yang
    Li, Maoyu
    Wang, Boxuan
    Cao, Bei
    Yang, Lizhong
    ENERGY, 2022, 238
  • [43] Phase change material properties identification for the design of efficient thermal management system for cylindrical Lithium-ion battery module
    Napa, Nagaraju
    Agrawal, Manish Kumar
    Tamma, Bhaskar
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [44] Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling
    Zhang, Wencan
    Liang, Zhicheng
    Yin, Xiuxing
    Ling, Guozhi
    APPLIED THERMAL ENGINEERING, 2021, 184
  • [45] A lithium-ion battery-thermal-management design based on phase-change-material thermal storage and spray cooling
    Lei, Shurong
    Shi, Yong
    Chen, Guanyi
    APPLIED THERMAL ENGINEERING, 2020, 168
  • [46] Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module
    Shan, Shuai
    Li, Li
    Xu, Qiang
    Ling, Lei
    Xie, Yajun
    Wang, Hongkang
    Zheng, Keqing
    Zhang, Lanchun
    Bei, Shaoyi
    ENERGY, 2023, 274
  • [47] Numerical study on cooling of prismatic lithium-ion battery module
    Mark, Addanki
    Ramanjaneyulu, Randhi Bulli Kanaka
    Kiran, Redagaani Uday
    Vardhan, Vantipalli Harsha
    Jilte, Ravindra
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 10975 - 10979
  • [48] Experimental investigation on thermal management of lithium-ion battery with roll bond liquid cooling plate
    Chen, Zhaoliang
    Yang, Shu
    Pan, Minqiang
    Xu, Jing
    APPLIED THERMAL ENGINEERING, 2022, 206
  • [49] Experimental investigation on thermal management of lithium-ion battery with roll bond liquid cooling plate
    Chen, Zhaoliang
    Yang, Shu
    Pan, Minqiang
    Xu, Jing
    Applied Thermal Engineering, 2022, 206
  • [50] Experimental Investigation on Phase Change Materials for Thermal Management of Lithium-ion Battery Packs
    Thaler, Stephan
    da Silva, Sylvicley Figueira
    Hauser, Robert
    Lackner, Roman
    PROCEEDINGS OF THE 14TH INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE 2020 (IRES 2020), 2021, 6 : 171 - 176