Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling

被引:119
|
作者
An, Zhiguo [1 ]
Chen, Xing [1 ]
Zhao, Lin [1 ]
Gao, Zhengyuan [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Mechatron & Vehicle Engn, 66 Xue Fu Rd, Chongqing 400074, Peoples R China
关键词
Lithium-ion battery; Composite phase change material; Thermal management; Liquid cooling; SYSTEM; PERFORMANCE; GRAPHITE; OPTIMIZATION; PACK;
D O I
10.1016/j.applthermaleng.2019.114345
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel thermal management system was proposed based on paraffin (RT44HC)/expanded graphite (EG) composite phase change material (CPCM) coupled with liquid cooling to maintain the temperature rise and difference within a desirable range of lithium-ion batteries at a discharge rate of 3C. A numerical research was conducted by computational fluid dynamics (CFD) to investigate the effects of the battery's thermal characteristics at an ambient temperature of 40 degrees C at various flow velocities, channel arrangement and CPCM with different mass fraction of EG. Furthermore, the thermal behavior of the integrated thermal management system (ITMS) in a charge-discharge cycles was analyzed. The results indicate that the heat dissipation of the battery pack is enhanced with an increase of the flow velocity, but when the flow velocity is greater than 0.08 m/s, the increase of the flow velocity imposes little effect on further improving heat dissipation performance of the ITMS. The channel layout of Type I indicates the optimal cooling performance at various flow velocities. Compared with the pure paraffin phase change material (PCM), the maximum temperature is reduced by 2.1 degrees C, and the temperature difference is only 2 degrees C in the ITMS, with an EG of 6 wt%. On charge-discharge duties, the maximum temperature and the initial temperature are constant at the lower liquid flow velocity of 0.04 m/s, and the ITMS with an EG of 6 wt% meets the requirements for heat dissipation.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A numerical investigation of novel segmented PCM blocks filled with different phase change material cooling for Lithium-Ion battery
    Lokhande, Indra Kumar
    Tiwari, Nishant
    APPLIED THERMAL ENGINEERING, 2024, 252
  • [32] A Thermal Design and Experimental Investigation for the Fast Charging Process of a Lithium-Ion Battery Module With Liquid Cooling
    Chen, Siqi
    Bao, Nengsheng
    Peng, Xiongbin
    Garg, Akhil
    Chen, Zhanglin
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (02)
  • [34] Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System
    Kang, Wei
    Zhao, Yiqiang
    Jia, Xueheng
    Hao, Lin
    Dang, Leping
    Wei, Hongyuan
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2021, 27 (01) : 55 - 63
  • [35] Thermal Management Optimization of Prismatic Lithium-Ion Battery Using Phase Change Material
    Ponangi, Babu Rao
    Shreyas, S.
    Shashwath, D. S.
    SAE INTERNATIONAL JOURNAL OF PASSENGER VEHICLE SYSTEMS, 2022, 15 (02): : 133 - 147
  • [36] Performance analysis of a novel thermal management system with composite phase change material for a lithium-ion battery pack
    Wang, Xiaoming
    Xie, Yongqi
    Day, Rodney
    Wu, Hongwei
    Hu, Zhongliang
    Zhu, Jianqin
    Wen, Dongsheng
    ENERGY, 2018, 156 : 154 - 168
  • [37] Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System
    Wei Kang
    Yiqiang Zhao
    Xueheng Jia
    Lin Hao
    Leping Dang
    Hongyuan Wei
    Transactions of Tianjin University, 2021, 27 : 55 - 63
  • [38] Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System
    Wei Kang
    Yiqiang Zhao
    Xueheng Jia
    Lin Hao
    Leping Dang
    Hongyuan Wei
    Transactions of Tianjin University, 2021, (01) : 55 - 63
  • [39] Influence of mechanical vibration on composite phase change material based thermal management system for lithium-ion battery
    Zhang, Wencan
    Li, Xingyao
    Wu, Weixiong
    Huang, Jianfeng
    JOURNAL OF ENERGY STORAGE, 2022, 54
  • [40] Porous-Material-Based Composite Phase Change Materials for a Lithium-Ion Battery Thermal Management System
    Fang, Min
    Zhou, Jianduo
    Fei, Hua
    Yang, Kai
    He, Ruiqiang
    ENERGY & FUELS, 2022, 36 (08) : 4153 - 4173