Adaptive Control Using Interval Type-2 Fuzzy Logic

被引:9
|
作者
Zhou, Haibo [1 ]
Ying, Hao [2 ]
Duan, Ji'an [1 ]
机构
[1] Cent S Univ, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China
[2] Wayne State Univ, Dept Elect & Comp Engn, Detroit, MI 48201 USA
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
SYSTEMS; DESIGN;
D O I
10.1109/FUZZY.2009.5277302
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Type-2 (T2) fuzzy, systems have gained increasing attention in the recent years. There have been a number of T2 fuzzy control studies in the literature but only one of them is involved in adaptive control. The objective of this paper is to develop a new and theoretically rigorous interval T2 adaptive fuzzy controller for controlling uncertain systems. Our adaptive controller contains a T2 fuzzy system component that is mathematically proven to be capable of approximating any continuous function to an), degree of accuracy (in contrast, the sole work in the literature just assumes the universal approximation ability without showing any proof). Based on the Lyapunov method, we design the adaptive laws with mathematical proofs for stability and convergence of the closed-loop system. The controller updates its parameters online to control an uncertain system and track a reference trajectory. Our simulation study involves a nonlinear inverted pendulum. The simulation results demonstrate that the interval T2 adaptive fuzzy controller can achieve the system stability as designed and maintain good tracking performance. We also use the simulation to study the system performance under noise and disturbance.
引用
收藏
页码:836 / +
页数:2
相关论文
共 50 条
  • [41] An Optimal Defuzzification Method for Interval Type-2 Fuzzy Logic Control Scheme
    Allawi, Ziyad T.
    Abdalla, Turki Y.
    [J]. 2015 SCIENCE AND INFORMATION CONFERENCE (SAI), 2015, : 619 - 627
  • [42] Adaptive Conceding Strategies for Negotiating Agents Based on Interval Type-2 Fuzzy Logic
    Zhan, Jieyu
    Luo, Xudong
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2016, 2016, 9983 : 222 - 235
  • [43] A new adaptive Kalman filter based on interval type-2 fuzzy logic system
    Hua, Jing
    Zhang, Hua
    Liu, Jizhong
    [J]. Journal of Information and Computational Science, 2015, 12 (05): : 1751 - 1763
  • [44] Direct adaptive interval type-2 fuzzy logic controller for the multivariable anaesthesia system
    El-Bardini, Mohammad
    El-Nagar, Ahmad M.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2011, 2 (3-4) : 149 - 160
  • [45] Design of an Adaptive Interval Type-2 Fuzzy Logic Controller for the Position Control of a Servo System with an Intelligent Sensor
    Kayacan, Erdal
    Kaynak, Okyay
    Abiyev, Rahib
    Torresen, Jim
    Hovin, Mats
    Glette, Kyrre
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [46] Interval Type-2 Fuzzy Control Using Distending Function
    Dombi, Jozsef
    Hussain, Abrar
    [J]. FUZZY SYSTEMS AND DATA MINING V (FSDM 2019), 2019, 320 : 705 - 714
  • [47] Adaptive Fuzzy Logic Controller for Vehicle Active Suspensions with Interval Type-2 Fuzzy Membership Functions
    Cao, Jiangtao
    Liu, Honghai
    Li, Ping
    Brown, David
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 83 - +
  • [48] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    Castillo, O.
    Melin, P.
    Alanis, A.
    Montiel, O.
    Sepulveda, R.
    [J]. SOFT COMPUTING, 2011, 15 (06) : 1145 - 1160
  • [49] Microcalcification detection in mammograms using interval type-2 fuzzy logic system
    Thovutikul, Sutasinee
    Auephanwiriyakul, Sansanee
    Tbeera-Umpon, Nipon
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1432 - +
  • [50] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    O. Castillo
    P. Melin
    A. Alanis
    O. Montiel
    R. Sepulveda
    [J]. Soft Computing, 2011, 15 : 1145 - 1160