Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms

被引:0
|
作者
O. Castillo
P. Melin
A. Alanis
O. Montiel
R. Sepulveda
机构
[1] Tijuana,
[2] Institute of Technology,undefined
[3] Center for Research in Digital Systems,undefined
[4] IPN,undefined
来源
Soft Computing | 2011年 / 15卷
关键词
Interval type-2 fuzzy logic; Evolutionary algorithms; Fuzzy control;
D O I
暂无
中图分类号
学科分类号
摘要
A method for designing optimal interval type-2 fuzzy logic controllers using evolutionary algorithms is presented in this paper. Interval type-2 fuzzy controllers can outperform conventional type-1 fuzzy controllers when the problem has a high degree of uncertainty. However, designing interval type-2 fuzzy controllers is more difficult because there are more parameters involved. In this paper, interval type-2 fuzzy systems are approximated with the average of two type-1 fuzzy systems, which has been shown to give good results in control if the type-1 fuzzy systems can be obtained appropriately. An evolutionary algorithm is applied to find the optimal interval type-2 fuzzy system as mentioned above. The human evolutionary model is applied for optimizing the interval type-2 fuzzy controller for a particular non-linear plant and results are compared against an optimal type-1 fuzzy controller. A comparative study of simulation results of the type-2 and type-1 fuzzy controllers, under different noise levels, is also presented. Simulation results show that interval type-2 fuzzy controllers obtained with the evolutionary algorithm outperform type-1 fuzzy controllers.
引用
收藏
页码:1145 / 1160
页数:15
相关论文
共 50 条
  • [1] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    Castillo, O.
    Melin, P.
    Alanis, A.
    Montiel, O.
    Sepulveda, R.
    [J]. SOFT COMPUTING, 2011, 15 (06) : 1145 - 1160
  • [2] Optimization of Interval Type-2 Fuzzy Logic Controllers with Rule Base Size Reduction Using Genetic Algorithms
    Yeasmin, Soniya
    Paul, Animesh Kumar
    Shill, Pintu Chandra
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION & COMMUNICATION TECHNOLOGY (ICEEICT), 2016,
  • [3] Optimization of Type-2 Fuzzy Logic Controllers for Mobile Robots Using Evolutionary Methods
    Martinez, Ricardo
    Rodriguez, Antonio
    Castillo, Oscar
    Melin, Patricia
    Aguilar, Luis T.
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 4764 - +
  • [4] Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms
    Martinez, Ricardo
    Castillo, Oscar
    Aguilar, Luis T.
    [J]. INFORMATION SCIENCES, 2009, 179 (13) : 2158 - 2174
  • [5] Optimization of Interval Type-2 Fuzzy Logic Controller Using Quantum Genetic Algorithms
    Shill, Pintu Chandra
    Amin, Md. Faijul
    Akhand, M. A. H.
    Murase, Kazuyuki
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [6] Optimization of Interval Type-2 Fuzzy Logic Systems using Tabu Search Algorithms
    Almaraashi, Majid
    Hedar, Abdel-Rahman
    [J]. 2014 SIXTH WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2014, : 158 - 163
  • [7] Evolutionary Interval Type-2 Fuzzy Systems Using Continuous Ant Colony Optimization Algorithms
    Juang, Chia-Feng
    Hung, Chi-Wei
    [J]. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 26 - 31
  • [8] A review on the design and optimization of interval type-2 fuzzy controllers
    Castillo, Oscar
    Melin, Patricia
    [J]. APPLIED SOFT COMPUTING, 2012, 12 (04) : 1267 - 1278
  • [9] Design of Interval Type-2 Fuzzy Logic Systems Using Prior Knowledge via Optimization Algorithms
    Wang, Tiechao
    Yi, Jianqiang
    Wang, Tiechao
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1681 - 1688
  • [10] Design of Interval Type-2 Fuzzy Logic Controllers for Flocking Algorithm
    Lee, Seung-Mok
    Kim, Jong-Hwan
    Myung, Hyun
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2594 - 2599