Evolutionary Interval Type-2 Fuzzy Systems Using Continuous Ant Colony Optimization Algorithms

被引:0
|
作者
Juang, Chia-Feng [1 ]
Hung, Chi-Wei [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Elect Engn, Taichung, Taiwan
关键词
evolutionary fuzzy systems; ant colony optimization; type-2 fuzzy systems; swarm intelligence; PARTICLE-SWARM OPTIMIZATION; NEURAL-NETWORK; CONTROLLER; DESIGN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes the optimization of interval type-2 fuzzy systems (IT2FSs) through continuous ant colony optimization (ACO) algorithm. The optimized IT2FS consists of Mamdani-type fuzzy rules, where the antecedent and consequent parts use interval type-2 Gaussian fuzzy sets with uncertain means. Given the structure of an IT2FS, this paper proposes the optimization of all the free parameters in it through two types of continuous ACO algorithms. The first one is ant colony optimization in real space, where a colony of solution vectors is created with each vector comprising all of the free parameters in an IT2FS. The second one is cooperative continuous ACO (CCACO), where multiple colonies are created with each solution vector in a colony comprising only the free parameters in a single rule. Simulations are presented to the show the performance of the continuous ACO algorithms for IT2FS design with comparisons with different type-1 and type-2 fuzzy systems.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [1] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    Castillo, O.
    Melin, P.
    Alanis, A.
    Montiel, O.
    Sepulveda, R.
    [J]. SOFT COMPUTING, 2011, 15 (06) : 1145 - 1160
  • [2] Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms
    O. Castillo
    P. Melin
    A. Alanis
    O. Montiel
    R. Sepulveda
    [J]. Soft Computing, 2011, 15 : 1145 - 1160
  • [3] Ant colony optimization with dynamic parameter adaptation based on interval type-2 fuzzy logic systems
    Olivas, Frumen
    Valdez, Fevrier
    Castillo, Oscar
    Gonzalez, Claudia I.
    Martinez, Gabriela
    Melin, Patricia
    [J]. APPLIED SOFT COMPUTING, 2017, 53 : 74 - 87
  • [4] Optimization of Interval Type-2 Fuzzy Logic Systems using Tabu Search Algorithms
    Almaraashi, Majid
    Hedar, Abdel-Rahman
    [J]. 2014 SIXTH WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2014, : 158 - 163
  • [5] Reinforcement Self-Organizing Interval Type-2 Fuzzy System with Ant Colony Optimization
    Juang, Chia-Feng
    Hsu, Chia-Hung
    Chuang, Chia-Feng
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 771 - 776
  • [6] Ant Colony Optimization of type-2 Fuzzy Helicopter Controller
    Rezoug, A.
    Achour, Z.
    Hamerlain, M.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 1548 - 1553
  • [7] Design of type-2 Fuzzy Logic Systems Based on Improved Ant Colony Optimization
    Zhang, Zhifeng
    Wang, Tao
    Chen, Yang
    Lan, Jie
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (02) : 536 - 544
  • [8] Design of type-2 Fuzzy Logic Systems Based on Improved Ant Colony Optimization
    Zhifeng Zhang
    Tao Wang
    Yang Chen
    Jie Lan
    [J]. International Journal of Control, Automation and Systems, 2019, 17 : 536 - 544
  • [9] Design of Interval Type-2 Fuzzy Logic Systems Using Prior Knowledge via Optimization Algorithms
    Wang, Tiechao
    Yi, Jianqiang
    Wang, Tiechao
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 1681 - 1688
  • [10] Application of Interval Type-2 Fuzzy Logic System and Ant Colony Optimization for Hydropower Dams Displacement Forecasting
    Dinh Sinh Mai
    Kien-Trinh Thi Bui
    Chinh Van Doan
    [J]. International Journal of Fuzzy Systems, 2023, 25 : 2052 - 2066