Evolutionary Interval Type-2 Fuzzy Systems Using Continuous Ant Colony Optimization Algorithms

被引:0
|
作者
Juang, Chia-Feng [1 ]
Hung, Chi-Wei [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Elect Engn, Taichung, Taiwan
关键词
evolutionary fuzzy systems; ant colony optimization; type-2 fuzzy systems; swarm intelligence; PARTICLE-SWARM OPTIMIZATION; NEURAL-NETWORK; CONTROLLER; DESIGN;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes the optimization of interval type-2 fuzzy systems (IT2FSs) through continuous ant colony optimization (ACO) algorithm. The optimized IT2FS consists of Mamdani-type fuzzy rules, where the antecedent and consequent parts use interval type-2 Gaussian fuzzy sets with uncertain means. Given the structure of an IT2FS, this paper proposes the optimization of all the free parameters in it through two types of continuous ACO algorithms. The first one is ant colony optimization in real space, where a colony of solution vectors is created with each vector comprising all of the free parameters in an IT2FS. The second one is cooperative continuous ACO (CCACO), where multiple colonies are created with each solution vector in a colony comprising only the free parameters in a single rule. Simulations are presented to the show the performance of the continuous ACO algorithms for IT2FS design with comparisons with different type-1 and type-2 fuzzy systems.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [31] Reinforcement Interval Type-2 Fuzzy Controller Design by Online Rule Generation and Q-Value-Aided Ant Colony Optimization
    Juang, Chia-Feng
    Hsu, Chia-Hung
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (06): : 1528 - 1542
  • [32] A Fuzzy Bee Colony Optimization Algorithm Using an Interval Type-2 Fuzzy Logic System for Trajectory Control of a Mobile Robot
    Amador-Angulo, Leticia
    Castillo, Oscar
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, MICAI 2015, PT I, 2015, 9413 : 460 - 471
  • [33] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    S. Sharan
    B. K. Sharma
    Kavikumar Jacob
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 1505 - 1526
  • [34] Interval type-2 fuzzy automata and Interval type-2 fuzzy grammar
    Sharan, S.
    Sharma, B. K.
    Jacob, Kavikumar
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1505 - 1526
  • [35] Studies on Centroid Type-reduction Algorithms for Interval Type-2 Fuzzy Logic Systems
    Chen, Yang
    Wang, Dazhi
    [J]. PROCEEDINGS 2015 IEEE FIFTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING BDCLOUD 2015, 2015, : 344 - 349
  • [36] Designing Fuzzy-Rule-Based Systems Using Continuous Ant-Colony Optimization
    Juang, Chia-Feng
    Chang, Po-Han
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (01) : 138 - 149
  • [37] Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications
    Maldonado, Yazmin
    Castillo, Oscar
    Melin, Patricia
    [J]. APPLIED SOFT COMPUTING, 2013, 13 (01) : 496 - 508
  • [38] Optimization of Interval Type-2 Fuzzy Logic System Using Grasshopper Optimization Algorithm
    Hassan, Saima
    Khanesar, Mojtaba Ahmadieh
    Hussein, Nazar Kalaf
    Belhaouari, Samir Brahim
    Amjad, Usman
    Mashwani, Wali Khan
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 3513 - 3531
  • [39] Optimization of Interval Type-2 Fuzzy Logic Controllers with Rule Base Size Reduction Using Genetic Algorithms
    Yeasmin, Soniya
    Paul, Animesh Kumar
    Shill, Pintu Chandra
    [J]. 2016 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION & COMMUNICATION TECHNOLOGY (ICEEICT), 2016,
  • [40] Design of Interval Type-2 Fuzzy Neural Networks and Their Optimization Using Real-coded Genetic Algorithms
    Park, Keon-Jun
    Oh, Sung-Kwun
    Pedrycz, Witold
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 2013 - +