Design of Interval Type-2 Fuzzy Neural Networks and Their Optimization Using Real-coded Genetic Algorithms

被引:7
|
作者
Park, Keon-Jun [1 ]
Oh, Sung-Kwun [1 ]
Pedrycz, Witold [2 ]
机构
[1] Univ Suwon, Dept Elect Engn, San 2-2, Hwaseong Si 445743, Gyeonggi Do, South Korea
[2] Univ Alberta, Dept Elect & Comp Engn, Syst Res Inst, Polish Acad Sci, Edmonton, AB T6G 2G6, Canada
关键词
LOGIC SYSTEMS;
D O I
10.1109/FUZZY.2009.5277365
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the design methodology of interval type-2 fuzzy neural networks (IT2FNN). And to optimize the network we use a real-coded genetic algorithm. IT2FNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The antecedent part of the network is composed of the fuzzy division of input space and the consequence part of the network is represented by polynomial functions. The parameters such as the apexes of membership function, uncertainty parameter, the learning rate and the momentum coefficient are optimized using genetic algorithm (GA). The proposed network is evaluated with the performance between the approximation and the generalization abilities.
引用
收藏
页码:2013 / +
页数:2
相关论文
共 50 条
  • [1] Optimization of Interval Type-2 Fuzzy Logic Controller Using Real-Coded Quantum Clonal Selection Algorithm
    Satir, Esra
    Baser, Ekrem
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2022, 28 (03) : 4 - 14
  • [2] Interval Type-2 Fuzzy Classifier Design Using Genetic Algorithms
    Pimenta, Adinovam H. M.
    Camargo, Helosia A.
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [3] Source Mask Optimization Using Real-Coded Genetic Algorithms
    Yang, Chaoxing
    Wang, Xiangzhao
    Li, Sikun
    Erdmann, Andreas
    [J]. OPTICAL MICROLITHOGRAPHY XXVI, 2013, 8683
  • [4] Optimization of Interval Type-2 Fuzzy Logic Controller Using Quantum Genetic Algorithms
    Shill, Pintu Chandra
    Amin, Md. Faijul
    Akhand, M. A. H.
    Murase, Kazuyuki
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [5] Optimization with Genetic Algorithms of Modular Neural Networks using Interval Type-2 Fuzzy Logic for Response Integration: the case of Multimodal Biometry
    Hidalgo, Denisse
    Castillo, Oscar
    Melin, Patricia
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 738 - 745
  • [6] Optimal lens design by real-coded genetic algorithms using UNDX
    Ono, I
    Kobayashi, S
    Yoshida, K
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 186 (2-4) : 483 - 497
  • [7] Reliability-based design optimization of electromagnetic shielding structure using neural networks and real-coded genetic algorithm
    Gargama, Heeralal
    Chaturvedi, Sanjay K.
    Thakur, Awalendra K.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (18) : 3471 - 3481
  • [8] TWO EFFICIENT REAL-CODED GENETIC ALGORITHMS FOR REAL PARAMETER OPTIMIZATION
    Chen, Zhi-Qiang
    Wang, Rong-Long
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (08): : 4871 - 4883
  • [9] Globally Multimodal Function Optimization by Real-coded Genetic Algorithms using Traps
    Karatsu, Naoya
    Nagata, Yuichi
    Ono, Isao
    Kobayashi, Shigenobu
    [J]. 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [10] An improved class of real-coded Genetic Algorithms for numerical optimization
    Ali, Mostafa Z.
    Awad, Noor H.
    Suganthan, Ponnuthurai N.
    Shatnawi, Ali M.
    Reynolds, Robert G.
    [J]. NEUROCOMPUTING, 2018, 275 : 155 - 166