Design of Interval Type-2 Fuzzy Neural Networks and Their Optimization Using Real-coded Genetic Algorithms

被引:7
|
作者
Park, Keon-Jun [1 ]
Oh, Sung-Kwun [1 ]
Pedrycz, Witold [2 ]
机构
[1] Univ Suwon, Dept Elect Engn, San 2-2, Hwaseong Si 445743, Gyeonggi Do, South Korea
[2] Univ Alberta, Dept Elect & Comp Engn, Syst Res Inst, Polish Acad Sci, Edmonton, AB T6G 2G6, Canada
关键词
LOGIC SYSTEMS;
D O I
10.1109/FUZZY.2009.5277365
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we introduce the design methodology of interval type-2 fuzzy neural networks (IT2FNN). And to optimize the network we use a real-coded genetic algorithm. IT2FNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The antecedent part of the network is composed of the fuzzy division of input space and the consequence part of the network is represented by polynomial functions. The parameters such as the apexes of membership function, uncertainty parameter, the learning rate and the momentum coefficient are optimized using genetic algorithm (GA). The proposed network is evaluated with the performance between the approximation and the generalization abilities.
引用
收藏
页码:2013 / +
页数:2
相关论文
共 50 条
  • [41] Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods
    Wang, Jiajun
    Kumbasar, Tufan
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) : 247 - 257
  • [42] Optimization of Interval Type-2 and Type-1 Fuzzy Integrators in Ensembles of ANFIS Models with Genetic Algorithms
    Soto, Jesus
    Melin, Patricia
    Castillo, Oscar
    [J]. 2013 MEXICAN INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE (ENC 2013), 2013, : 99 - 104
  • [43] Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms
    Martinez, Ricardo
    Castillo, Oscar
    Aguilar, Luis T.
    [J]. INFORMATION SCIENCES, 2009, 179 (13) : 2158 - 2174
  • [44] Fetal Health State Detection Using Interval Type-2 Fuzzy Neural Networks
    Abiyev, Rahib
    Idoko, John Bush
    Altiparmak, Hamit
    Tuzunkan, Murat
    [J]. DIAGNOSTICS, 2023, 13 (10)
  • [45] Response Integration in Ensemble Neural Networks using Interval Type-2 Fuzzy Logic
    Lopez, Miguel
    Melin, Patricia
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 1503 - 1508
  • [46] Hybrid learning algorithm for interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    [J]. GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 157 - 162
  • [47] Fast Learning Method of Interval Type-2 Fuzzy Neural Networks
    Olczyk, Damian
    Markowska-Kaczmar, Urszula
    [J]. 2014 14TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2014, : 134 - 139
  • [48] Evolutionary Interval Type-2 Fuzzy Systems Using Continuous Ant Colony Optimization Algorithms
    Juang, Chia-Feng
    Hung, Chi-Wei
    [J]. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2016, : 26 - 31
  • [49] Design of interval type-2 fuzzy neural network system and application
    Wang, Tao
    Han, Chunyu
    Jin, Xuelian
    [J]. ICIC Express Letters, Part B: Applications, 2015, 6 (04): : 1041 - 1047
  • [50] Interval type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimisation with genetic algorithms
    Hidalgo, Denisse
    Castillo, Oscar
    Melin, Patricia
    [J]. INTERNATIONAL JOURNAL OF BIOMETRICS, 2008, 1 (01) : 114 - 128