MAXIMAL FUNCTIONS OF MULTILINEAR MULTIPLIERS

被引:0
|
作者
Honzik, Petr [1 ]
机构
[1] AS CR, Inst Math, CZ-11567 Prague 1, Czech Republic
关键词
FOURIER MULTIPLIERS; INEQUALITIES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(j) be Fourier multipliers on R(2d) that satisfy vertical bar partial derivative(alpha)m(j)(xi(1), xi(2))vertical bar <= A(alpha)(vertical bar xi(1)vertical bar + vertical bar xi(2)vertical bar)(-vertical bar alpha vertical bar) for sufficiently large alpha uniformly in j, for j = 1,2, ..., N. We study the maximal operator of two variables m(f, g)(x) = sup(1 <= j <= N) vertical bar T(mj)(f, g)(x)vertical bar, where T(mj) are the associated bilinear operators T(mj)(f, g)(x) = integral(R2d) m(xi(1), xi(2))(f) over cap(xi(1))(g) over cap(xi(2))e(2 pi i(xi 1+xi 2).x)d xi(1)d xi(2). We prove that m maps L(p1) (R(d)) x L(p2) (Rd) to L(p)(R(d)) with norm at most a constant multiple root log(N + 2). We also provide an example to indicate the sharpness of this result.
引用
收藏
页码:995 / 1006
页数:12
相关论文
共 50 条
  • [41] Sharp Weighted Bounds for Multilinear Maximal Functions and Calderon-Zygmund Operators
    Damian, Wendolin
    Lerner, Andrei K.
    Perez, Carlos
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2015, 21 (01) : 161 - 181
  • [42] Sharp Weighted Bounds for Multilinear Maximal Functions and Calderón–Zygmund Operators
    Wendolín Damián
    Andrei K. Lerner
    Carlos Pérez
    Journal of Fourier Analysis and Applications, 2015, 21 : 161 - 181
  • [43] ESTIMATES NEAR L1 FOR FOURIER MULTIPLIERS AND MAXIMAL FUNCTIONS
    SEEGER, A
    ARCHIV DER MATHEMATIK, 1989, 53 (02) : 188 - 193
  • [44] Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers
    Bui, The Anh
    Duong, Xuan Thinh
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (01): : 63 - 75
  • [45] Maximal Marcinkiewicz multipliers
    Honzik, Petr
    ARKIV FOR MATEMATIK, 2014, 52 (01): : 135 - 147
  • [46] The Multilinear Strong Maximal Function
    Loukas Grafakos
    Liguang Liu
    Carlos Pérez
    Rodolfo H. Torres
    Journal of Geometric Analysis, 2011, 21 : 118 - 149
  • [47] MULTILINEAR SPHERICAL MAXIMAL FUNCTION
    Dosidis, Georgios
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (04) : 1471 - 1480
  • [48] On a biparameter maximal multilinear operator
    Luthy, Peter M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (05) : 1105 - 1152
  • [49] The Multilinear Strong Maximal Function
    Grafakos, Loukas
    Liu, Liguang
    Perez, Carlos
    Torres, Rodolfo H.
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (01) : 118 - 149
  • [50] Multilinear Cesaro maximal operators
    Bernardis, A. L.
    Crescimbeni, R.
    Martin-Reyes, F. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (01) : 191 - 204