MAXIMAL FUNCTIONS OF MULTILINEAR MULTIPLIERS

被引:0
|
作者
Honzik, Petr [1 ]
机构
[1] AS CR, Inst Math, CZ-11567 Prague 1, Czech Republic
关键词
FOURIER MULTIPLIERS; INEQUALITIES; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m(j) be Fourier multipliers on R(2d) that satisfy vertical bar partial derivative(alpha)m(j)(xi(1), xi(2))vertical bar <= A(alpha)(vertical bar xi(1)vertical bar + vertical bar xi(2)vertical bar)(-vertical bar alpha vertical bar) for sufficiently large alpha uniformly in j, for j = 1,2, ..., N. We study the maximal operator of two variables m(f, g)(x) = sup(1 <= j <= N) vertical bar T(mj)(f, g)(x)vertical bar, where T(mj) are the associated bilinear operators T(mj)(f, g)(x) = integral(R2d) m(xi(1), xi(2))(f) over cap(xi(1))(g) over cap(xi(2))e(2 pi i(xi 1+xi 2).x)d xi(1)d xi(2). We prove that m maps L(p1) (R(d)) x L(p2) (Rd) to L(p)(R(d)) with norm at most a constant multiple root log(N + 2). We also provide an example to indicate the sharpness of this result.
引用
收藏
页码:995 / 1006
页数:12
相关论文
共 50 条
  • [31] The Estimates for Sharp Maximal Functions of Multilinear Strongly Singular Integral Operators
    Jun Feng LI Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (06) : 1495 - 1508
  • [32] Maximal multilinear operators
    Demeter, Ciprian
    Tao, Terence
    Thiele, Christoph
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) : 4989 - 5042
  • [33] Sharpening Bounds for Multilinear Schur Multipliers
    Skripka A.
    La Matematica, 2022, 1 (1): : 167 - 185
  • [34] On Multilinear Fourier Multipliers of Limited Smoothness
    Grafakos, Loukas
    Miyachi, Akihiko
    Tomita, Naohito
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (02): : 299 - 330
  • [35] Tracial bounds for multilinear Schur multipliers
    Skripka, Anna
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 : 62 - 84
  • [36] Weighted estimates for multilinear Fourier multipliers
    Li, Kangwei
    Sun, Wenchang
    FORUM MATHEMATICUM, 2015, 27 (02) : 1101 - 1116
  • [37] New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory
    Lerner, Andrei K.
    Ombrosi, Sheldy
    Perez, Carlos
    Torres, Rodolfo H.
    Trujillo-Gonzalez, Rodrigo
    ADVANCES IN MATHEMATICS, 2009, 220 (04) : 1222 - 1264
  • [38] Maximal functions associated with Fourier multipliers of Mikhlin-Hormander type
    Christ, M
    Grafakos, L
    Honzík, P
    Seeger, A
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (01) : 223 - 240
  • [39] The Sharp Weighted Bound for Multilinear Maximal Functions and Calderón–Zygmund Operators
    Kangwei Li
    Kabe Moen
    Wenchang Sun
    Journal of Fourier Analysis and Applications, 2014, 20 : 751 - 765
  • [40] The Sharp Weighted Bound for Multilinear Maximal Functions and Caldern-Zygmund Operators
    Li, Kangwei
    Moen, Kabe
    Sun, Wenchang
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (04) : 751 - 765