Deflagration-to-detonation transition in an unconfined space

被引:24
|
作者
Koksharov, Andrey [1 ]
Bykov, Viatcheslav [1 ]
Kagan, Leonid [2 ]
Sivashinsky, Gregory [2 ]
机构
[1] Karlsruhe Inst Technol, Inst Tech Thermodynam, D-76131 Karlsruhe, Germany
[2] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Deflagration-to-detonation transition; Accelerating flames; Thermal runaway of fast flames; SELF-ACCELERATION; NUCLEAR FLAMES; INSTABILITIES; SUPERNOVAE; MIXTURES;
D O I
10.1016/j.combustflame.2018.03.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
Whereas deflagration-to-detonation transition in confined systems is a matter of common knowledge, feasibility of the transition in unconfined space is still a matter of controversy. With a freely expanding self-accelerating spherical flame as an example, it is shown that deflagration-to-detonation transition in unconfined gaseous systems is indeed possible provided the flame is large enough. The transition is caused by positive feedback between the accelerating flame and the flame-driven pressure buildup, which results in the thermal runaway when the flame speed reaches a critical level. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
  • [41] Flame acceleration in channels with obstacles in the deflagration-to-detonation transition
    Valiev, Damir
    Bychkov, Vitaly
    Akkerman, V'yacheslav
    Law, Chung K.
    Eriksson, Lars-Erik
    [J]. COMBUSTION AND FLAME, 2010, 157 (05) : 1012 - 1021
  • [42] Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures
    Ettner, Florian
    Vollmer, Klaus G.
    Sattelmayer, Thomas
    [J]. JOURNAL OF COMBUSTION, 2014, 2014
  • [43] On the fractal theory of the slow deflagration-to-detonation transition in gases
    K. O. Sabdenov
    L. L. Min’kov
    [J]. Combustion, Explosion and Shock Waves, 1998, 34 : 63 - 71
  • [44] Deflagration-to-detonation transition in a kerosene-air mixture
    S. M. Frolov
    V. S. Aksenov
    [J]. Doklady Physical Chemistry, 2007, 416 : 261 - 264
  • [45] NUMERICAL MODELING OF DEFLAGRATION-TO-DETONATION TRANSITION IN POROUS EXPLOSIVES
    KIM, K
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (04): : 722 - 722
  • [46] Autoignition due to hydraulic resistance and deflagration-to-detonation transition
    Kagan, L.
    Sivashinsky, G.
    [J]. COMBUSTION AND FLAME, 2008, 154 (1-2) : 186 - 190
  • [47] Effects of Obstacles on Deflagration-to-Detonation Transition in Linked Vessels
    Yin, Zhonglin
    Wang, Zhirong
    Cao, Xingyan
    Zhen, Yaya
    Jiang, Kewei
    Ma, Shichang
    Gao, Wei
    [J]. COMBUSTION SCIENCE AND TECHNOLOGY, 2022, 194 (06) : 1265 - 1281
  • [48] The effects of NO2 addition on deflagration-to-detonation transition
    Pinard, R
    Higgins, A
    Lee, JHS
    [J]. COMBUSTION AND FLAME, 2004, 136 (1-2) : 146 - 154
  • [49] Deflagration-to-detonation transition in natural gas-air mixtures
    Zipf, Richard K., Jr.
    Gamezo, Vadim N.
    Mohamed, Khaled M.
    Oran, Elaine S.
    Kessler, David A.
    [J]. COMBUSTION AND FLAME, 2014, 161 (08) : 2165 - 2176
  • [50] On the mechanism of the deflagration-to-detonation transition in a hydrogen-oxygen mixture
    Liberman, M. A.
    Ivanov, M. F.
    Kiverin, A. D.
    Kuznetsov, M. S.
    Rakhimova, T. V.
    Chukalovskii, A. A.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 111 (04) : 684 - 698