Numerical Caputo Differentiation by Radial Basis Functions

被引:7
|
作者
Li, Ming [1 ]
Wang, Yujiao [1 ]
Ling, Leevan [2 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional derivatives; Inverse problem; Convergence analysis; Noisy data; Regularization; FRACTIONAL DIFFUSION EQUATION; SPECTRAL METHOD; NOISY DATA; DERIVATIVES; REGULARIZATION;
D O I
10.1007/s10915-014-9857-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Previously, based on the method of (radial powers) radial basis functions, we proposed a procedure for approximating derivative values from one-dimensional scattered noisy data. In this work, we show that the same approach also allows us to approximate the values of (Caputo) fractional derivatives (for orders between 0 and 1). With either an a priori or a posteriori strategy of choosing the regularization parameter, our convergence analysis shows that the approximated fractional derivative values converge at the same rate as in the case of integer order 1.
引用
收藏
页码:300 / 315
页数:16
相关论文
共 50 条
  • [41] Numerical Investigation of Electromagnetic Scattering Problems Based on the Compactly Supported Radial Basis Functions
    Ghehsareh, Hadi Roohani
    Etesami, Seyed Kamal
    Esfahani, Maryam Hajisadeghi
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (08): : 677 - 690
  • [42] Numerical Solution of Nonlinear Schrodinger Equations by Collocation Method Using Radial Basis Functions
    Haq, Sirajul
    Siraj-Ul-Islam
    Uddin, Marjan
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 44 (02): : 115 - 135
  • [43] The Radial Basis Functions Method for Improved Numerical Approximations of Geological Processes in Heterogeneous Systems
    Cécile Piret
    Nadun Dissanayake
    John S. Gierke
    Bengt Fornberg
    [J]. Mathematical Geosciences, 2020, 52 : 477 - 497
  • [44] A numerical study of Asian option with radial basis functions based finite differences method
    Kumar, Alpesh
    Tripathi, Lok Pati
    Kadalbajoo, Mohan K.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 50 : 1 - 7
  • [45] Numerical method based on radial basis functions for solving reaction-diffusion equations
    Su, Ling-De
    Jiang, Zi-Wu
    Jiang, Tong-Song
    [J]. 2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 893 - 896
  • [46] Radial Basis Functions: a Bayesian treatment
    Barber, D
    Schottky, B
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 402 - 408
  • [47] Radial Basis Functions for Phase Unwrapping
    Villa Hernandez, Jesus
    de la Rosa Vargas, Ismael
    de la Rosa Miranda, Enrique
    [J]. COMPUTACION Y SISTEMAS, 2010, 14 (02): : 145 - 150
  • [48] Trefftz radial basis functions (TRBF)
    Kompis, V.
    Stiavnicky, M.
    Zmindak, M.
    Murcinkova, Z.
    [J]. PROCEEDINGS OF LSAME.08: LEUVEN SYMPOSIUM ON APPLIED MECHANICS IN ENGINEERING, PTS 1 AND 2, 2008, : 25 - 35
  • [49] Acoustic Eigenanalysis with Radial Basis Functions
    Majkut, L.
    Olszewski, R.
    [J]. ACTA PHYSICA POLONICA A, 2014, 125 (4A) : A77 - A83
  • [50] On Spherical Averages of Radial Basis Functions
    B. J. C. Baxter
    [J]. Foundations of Computational Mathematics, 2008, 8 : 395 - 407