LIST STAR EDGE-COLORING OF SUBCUBIC GRAPHS

被引:11
|
作者
Kerdjoudj, Samia [1 ]
Kostochka, Alexandr [2 ,3 ]
Raspaud, Andre [4 ]
机构
[1] USTHB, Fac Math, LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Illinois, Urbana, IL 61801 USA
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
[4] Univ Bordeaux, LaBRI, 351 Cours Liberat, F-33405 Talence, France
基金
俄罗斯基础研究基金会;
关键词
graph coloring; edge coloring; star coloring; planar graphs;
D O I
10.7151/dmgt.2037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, ch'(st)(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvorak, Mohar and Samal asked whether the list star chromatic index of every subcubic graph is at most 7. We prove that it is at most 8. We also prove that if the maximum average degree of a subcubic graph G is less than 7/3 (respectively, 5/2) then ch'(st) (G) <= 5 (respectively, ch'(st)(G) <= 6).
引用
收藏
页码:1037 / 1054
页数:18
相关论文
共 50 条
  • [31] RECENT PROGRESS ON EDGE-COLORING GRAPHS
    HILTON, AJW
    DISCRETE MATHEMATICS, 1987, 64 (2-3) : 303 - 307
  • [32] List-coloring squares of sparse subcubic graphs
    Dvorak, Zdenek
    Skrekovski, Riste
    Tancer, Martin
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 139 - 159
  • [33] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS
    Basavaraju, Manu
    Chandran, L. Sunil
    Cohen, Nathann
    Havet, Frederic
    Mueller, Tobias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 463 - 478
  • [34] Note on injective edge-coloring of graphs
    Miao, Zhengke
    Song, Yimin
    Yu, Gexin
    DISCRETE APPLIED MATHEMATICS, 2022, 310 : 65 - 74
  • [35] STRONG EDGE-COLORING OF PLANAR GRAPHS
    Song, Wen-Yao
    Miao, Lian-Ying
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 845 - 857
  • [36] The edge-coloring of graphs with small genus
    Fan, HL
    Fu, HL
    ARS COMBINATORIA, 2004, 73 : 219 - 224
  • [37] The Complexity of (List) Edge-Coloring Reconfiguration Problem
    Osawa, Hiroki
    Suzuki, Akira
    Ito, Takehiro
    Zhou, Xiao
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (01): : 232 - 238
  • [38] Multigraph edge-coloring with local list sizes
    Dhawan, Abhishek
    DISCRETE MATHEMATICS, 2025, 348 (06)
  • [39] The Complexity of (List) Edge-Coloring Reconfiguration Problem
    Osawa, Hiroki
    Suzuki, Akira
    Ito, Takehiro
    Zhou, Xiao
    WALCOM: ALGORITHMS AND COMPUTATION, WALCOM 2017, 2017, 10167 : 347 - 358
  • [40] List star edge coloring of k-degenerate graphs
    Han, Miaomiao
    Li, Jiaao
    Luo, Rong
    Miao, Zhengke
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1838 - 1848