共 50 条
LIST STAR EDGE-COLORING OF SUBCUBIC GRAPHS
被引:11
|作者:
Kerdjoudj, Samia
[1
]
Kostochka, Alexandr
[2
,3
]
Raspaud, Andre
[4
]
机构:
[1] USTHB, Fac Math, LIFORCE, BP 32 El Alia, Algiers 16111, Algeria
[2] Univ Illinois, Urbana, IL 61801 USA
[3] Sobolev Inst Math, Novosibirsk 630090, Russia
[4] Univ Bordeaux, LaBRI, 351 Cours Liberat, F-33405 Talence, France
基金:
俄罗斯基础研究基金会;
关键词:
graph coloring;
edge coloring;
star coloring;
planar graphs;
D O I:
10.7151/dmgt.2037
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
A star edge-coloring of a graph G is a proper edge coloring such that every 2-colored connected subgraph of G is a path of length at most 3. For a graph G, let the list star chromatic index of G, ch'(st)(G), be the minimum k such that for any k-uniform list assignment L for the set of edges, G has a star edge-coloring from L. Dvorak, Mohar and Samal asked whether the list star chromatic index of every subcubic graph is at most 7. We prove that it is at most 8. We also prove that if the maximum average degree of a subcubic graph G is less than 7/3 (respectively, 5/2) then ch'(st) (G) <= 5 (respectively, ch'(st)(G) <= 6).
引用
收藏
页码:1037 / 1054
页数:18
相关论文