The L(2,1)-labeling problem on graphs

被引:309
|
作者
Chang, GJ
Kuo, D
机构
[1] Department of Applied Mathematics, National Chiao Tung University
关键词
L(2,1)-labeling; T-coloring; union; join; chordal graph; perfect graph; tree; bipartite matching; algorithm;
D O I
10.1137/S0895480193245339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that \f(x) - f(y)\ greater than or equal to 2 if d(x, y) = 1 and \f(x) - f(y)\ greater than or equal to 1 if d(x, y) = 2. The L(2, 1)-labeling number lambda(G) of G is the smallest number Ic such that G has an L(2, 1)-labeling with max{f(v) : v is an element of V(G)} = k. In this paper, we give exact formulas of lambda(G boolean OR H) and lambda(G + H). We also prove that lambda(G) less than or equal to Delta(2) + Delta for any graph G of maximum degree Delta. For odd-sun-free (OSF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to 2 Delta + 1. For sun-free (SF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to Delta + 2 chi(G) - 2. Finally, we present a polynomial time algorithm to determine lambda(T) for a tree T.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 50 条
  • [41] On some results for the L(2,1)-labeling on Cartesian sum graphs
    Shao, Zhendong
    Solis-Oba, Roberto
    ARS COMBINATORIA, 2016, 124 : 365 - 377
  • [42] L(2,1)-labeling of hamiltonian graphs with maximum degree 3
    Kang, Jeong-Hyun
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (01) : 213 - 230
  • [43] The L (2,1)-labeling on the skew and converse skew products of graphs
    Shao, Zhendong
    Yeh, Roger K.
    Zhang, David
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 59 - 64
  • [44] The L(2,1)-Labeling Problem on Oriented Regular Grids
    Calamoneri, Tiziana
    COMPUTER JOURNAL, 2011, 54 (11): : 1869 - 1875
  • [45] A RESTRICTED L(2,1)-LABELLING PROBLEM ON INTERVAL GRAPHS
    Patra, N.
    Amanathulla, S. K.
    Pal, M.
    Mondal, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (02): : 635 - 648
  • [46] Surjective L(2,1)-labeling of cycles and circular-arc graphs
    Amanathulla, Sk
    Pal, Madhumangal
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (01) : 739 - 748
  • [47] ONLINE COLORING AND L(2,1)-LABELING OF UNIT DISK INTERSECTION GRAPHS
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    Sokol, Joanna
    Wesek, Krzysztof
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 1335 - 1350
  • [48] The L(2,1)-labeling of unigraphs
    Calamoneri, Tiziana
    Petreschi, Rossella
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1196 - 1206
  • [49] L(2,1)-labeling of unigraphs
    Department of Computer Science, Sapienza University of Rome, Italy
    Lect. Notes Comput. Sci., (57-68):
  • [50] L(2,1)-Labeling of the Iterated Mycielski Graphs of Graphs and Some Problems Related to Matching Problems
    Dliou, Kamal
    El Boujaoui, Hicham
    Kchikech, Mustapha
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 489 - 518