The L(2,1)-labeling problem on graphs

被引:309
|
作者
Chang, GJ
Kuo, D
机构
[1] Department of Applied Mathematics, National Chiao Tung University
关键词
L(2,1)-labeling; T-coloring; union; join; chordal graph; perfect graph; tree; bipartite matching; algorithm;
D O I
10.1137/S0895480193245339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that \f(x) - f(y)\ greater than or equal to 2 if d(x, y) = 1 and \f(x) - f(y)\ greater than or equal to 1 if d(x, y) = 2. The L(2, 1)-labeling number lambda(G) of G is the smallest number Ic such that G has an L(2, 1)-labeling with max{f(v) : v is an element of V(G)} = k. In this paper, we give exact formulas of lambda(G boolean OR H) and lambda(G + H). We also prove that lambda(G) less than or equal to Delta(2) + Delta for any graph G of maximum degree Delta. For odd-sun-free (OSF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to 2 Delta + 1. For sun-free (SF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to Delta + 2 chi(G) - 2. Finally, we present a polynomial time algorithm to determine lambda(T) for a tree T.
引用
收藏
页码:309 / 316
页数:8
相关论文
共 50 条
  • [21] The L(2,1)-labeling problem on ditrees
    Chang, GJ
    Liaw, SC
    ARS COMBINATORIA, 2003, 66 : 23 - 31
  • [22] THE L(2,1)-LABELING ON TOTAL GRAPHS OF COMPLETE BIPARTITE GRAPHS
    Mihai, Gabriela
    MATHEMATICAL REPORTS, 2010, 12 (04): : 351 - 357
  • [23] THE L(2,1)-LABELING ON TOTAL GRAPHS OF COMPLETE MULTIPARTITE GRAPHS
    Marinescu-Ghemeci, Ruxandra
    Mihai, Gabriela
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (01): : 201 - 209
  • [24] The (2,1)-Edge Labeling Problem on Direct Product of Graphs
    Shao, Zhendong
    Averbakh, Igor
    ARS COMBINATORIA, 2020, 149 : 225 - 244
  • [25] On the L(2,1)-labeling conjecture for brick product graphs
    Shao, Zehui
    Zhang, Xiaosong
    Jiang, Huiqin
    Wang, Bo
    He, Juanjuan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 706 - 724
  • [26] L(2,1)-labeling of perfect elimination bipartite graphs
    Panda, B. S.
    Goel, Preeti
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1878 - 1888
  • [27] On the complexity of exact algorithm for L(2,1)-labeling of graphs
    Junosza-Szaniawski, Konstanty
    Rzazewski, Pawel
    INFORMATION PROCESSING LETTERS, 2011, 111 (14) : 697 - 701
  • [28] L(2,1)-labeling of flower snark and related graphs
    Tong Chunling
    Lin Xiaohui
    Yang Yuansheng
    Hou Zhengwei
    ARS COMBINATORIA, 2013, 110 : 505 - 512
  • [29] Heuristic Algorithms for the L(2,1)-Labeling Problem
    Panda, B.S.
    Goel, Preeti
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2010, 6466 LNCS : 214 - 221
  • [30] Fast Exact Algorithm for L(2,1)-Labeling of Graphs
    Junosza-Szaniawski, Konstanty
    Kratochvil, Jan
    Liedloff, Mathieu
    Rossmanith, Peter
    Rzazewski, Pawel
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2011, 2011, 6648 : 82 - 93